
Simulink® Test™
User’s Guide

R2022a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Test™ User's Guide
© COPYRIGHT 2015–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2015 Online only New for Version 1.0 (Release 2015a)
September 2015 Online only Revised for Version 1.1 (Release 2015b)
October 2015 Online only Rereleased for Version 1.0.1 (Release 2015aSP1)
March 2016 Online only Revised for Version 2.0 (Release 2016a)
September 2016 Online only Revised for Version 2.1 (Release 2016b)
March 2017 Online Only Revised for Version 2.2 (Release 2017a)
September 2017 Online Only Revised for Version 2.3 (Release 2017b)
March 2018 Online Only Revised for Version 2.4 (Release 2018a)
September 2018 Online Only Revised for Version 2.5 (Release 2018b)
March 2019 Online Only Revised for Version 3.0 (Release 2019a)
September 2019 Online Only Revised for Version 3.1 (Release 2019b)
March 2020 Online Only Revised for Version 3.2 (Release 2020a)
September 2020 Online Only Revised for Version 3.3 (Release 2020b)
March 2021 Online Only Revised for Version 3.4 (Release 2021a)
September 2021 Online Only Revised for Version 3.5 (Release 2021b)
March 2022 Online Only Revised for Version 3.6 (Release 2022a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Test Strategies
1

Link to Requirements . 1-2
Requirements Traceability Considerations . 1-2
Establish Requirements Traceability for Testing . 1-3

Requirements-Based Testing for Model Development 1-7

Test Harness
2

Test Harness and Model Relationship . 2-2
Harness-Model Relationship for a Model Component 2-3
Harness-Model Relationship for a Top-Level Model 2-4
Resolving Parameters . 2-5
Test Harness Considerations . 2-5

Test Harness Construction for Specific Model Elements 2-8
Signal Conversion . 2-8
Function Calls . 2-8
Physical Signal Connections . 2-9
Bus Signals . 2-9
String Signals . 2-9
Non-Graphical Connections . 2-10
Export Function Models . 2-10
Execution Semantics . 2-11
Sample Time Specification . 2-11

Create Test Harnesses and Select Properties . 2-12
Create a Test Harness For a Top Level Model . 2-12
Create a Test Harness for a Model Component . 2-12
Preview and Open Test Harnesses . 2-12
Change Test Harness Properties . 2-13
Considerations for Selecting Test Harness Properties 2-13
Test Harness Properties . 2-14
Customize Test Harness Creation Default Property Values 2-19

Refine, Test, and Debug a Subsystem . 2-22
Model and Requirements . 2-22
Create a Harness for the Controller . 2-24
Inspect and Refine the Controller . 2-25
Add Test Inputs and Test the Controller . 2-25
Debug the Controller . 2-26

iii

Contents

Manage Test Harnesses . 2-29
Internal and External Test Harnesses . 2-29
Manage External Test Harnesses . 2-29
Convert Between Internal and External Test Harnesses 2-30
Preview and Open Test Harnesses . 2-31
Model and Test Harness Locking . 2-32
Find Test Cases Associated with a Test Harness 2-32
Export Test Harnesses to Standalone Models . 2-33
Move and Clone Test Harnesses . 2-33
Clone and Export a Test Harness to a Separate Model 2-35
Delete Test Harnesses Programmatically . 2-37
Export Test Harness to Previous Version . 2-38

Customize Test Harnesses . 2-39
Callback Function Definition and Harness Information 2-39
Display Harness Information struct Contents . 2-41
Share Data Between Callbacks . 2-41
Customize a Test Harness to Create Mixed Source Types 2-42
Test Harness Callback Example . 2-43

Create Test Harnesses from Standalone Models . 2-46
Test Harness Import Workflow . 2-46
Component Compatibility for Test Harness Import 2-46
Import a Standalone Model as a Test Harness . 2-47

Synchronize Changes Between Test Harness and Model 2-50
Set Synchronization for a New Test Harness . 2-50
Change Synchronization of an Existing Test Harness 2-53
Synchronize Configuration Set and Model Workspace Data 2-53
Check for Unsynchronized Component Differences 2-53
Rebuild a Test Harness . 2-54
Push Changes from Test Harness to Model . 2-54
Check Component and Push Parameter to Main Model 2-54

Test Library Blocks . 2-58
Library Testing Workflow . 2-58
Library and Linked Subsystem Test Harnesses . 2-58
Edit Library Block from a Test Harness . 2-59
Testing a Library and a Linked Block . 2-59
SIL Testing a Reusable Library Subsystem . 2-64

Test Sequences and Assessments
3

Test Sequence Basics . 3-2
Test Sequence Hierarchy . 3-2
Test Sequence Scenarios . 3-2
Transition Types . 3-2
Create a Basic Test Sequence . 3-4
Create Basic Test Assessments . 3-5

iv Contents

Use Stateflow Chart for Test Harness Inputs and Scheduling 3-8
Use a Stateflow Chart for Test Harness Scheduling 3-8
Use a Stateflow Chart as a Test Harness Source . 3-9
Stateflow Chart as Test Harness Scheduler and Source 3-10

Assess Simulation and Compare Output Data . 3-14
Overview . 3-14
Compare Simulation Data to Baseline Data or Another Simulation 3-14
Post-Process Results With a Custom Script . 3-15
Run-Time Assessments . 3-15
Logical and Temporal Assessments . 3-17

Assess Model Simulation Using verify Statements 3-18
Activate verify Statements in the Test Assessment Block 3-18
Author verify Statements . 3-21

Verify Multiple Conditions at a Time . 3-23

Assess a Model by Using When Decomposition . 3-25

Test Sequence Editor . 3-30
Define Test Sequences . 3-30
Manage Test Steps . 3-30
Manage Input, Output, and Data Objects . 3-32
Find and Replace . 3-33
Automatic Syntax Correction . 3-34
Output and View Active Step Data . 3-34

Transitions, Temporal Operators, and Messages in Test Sequence Blocks
. 3-37

Transition Between Steps Using Temporal or Signal Conditions 3-37
Temporal Operators . 3-37
Transition Operators . 3-38
Use Messages in Test Sequences . 3-39

Generate Test Signals . 3-44
Signal Generation Functions . 3-44
Sinusoidal and Random Number Functions in Test Sequences 3-46

Using an External Function in a Test Sequence Block 3-49

Programmatically Create a Test Sequence . 3-51

Programmatically Create and Run Test Sequence Scenarios 3-55

Use Test Sequence Scenarios in the Test Sequence Editor and Test
Manager . 3-58

Scenario Parameter Section . 3-66

Test Sequence and Assessment Syntax . 3-67
Assessment Statements . 3-67
Temporal Operators . 3-68
Transition Operators . 3-69
Signal Generation Functions . 3-70

v

Logical Operators . 3-72
Relational Operators . 3-73

Debug a Test Sequence . 3-74
View Test Step Execution During Simulation . 3-74
Set Breakpoints to Enable Debugging . 3-74
View Data Values During Simulation . 3-75
Step Through Simulation . 3-75

Test Downshift Points of a Transmission Controller 3-77

Examine Model Verification Results by Using Simulation Data Inspector
. 3-82

Fix Requirements-Based Testing Issues . 3-86

Assess Temporal Logic by Using Temporal Assessments 3-92
Create a Temporal Assessment . 3-92
Define Temporal Assessment Conditions . 3-93
Evaluate the SUT . 3-95
Link Temporal Assessments to Requirements . 3-96

Test Traffic Light Control by Using Logical and Temporal Assessments
. 3-98

Logical and Temporal Assessment Syntax . 3-106
Bounds Check Assessments . 3-106
Trigger-Response Assessments . 3-106
Custom Assessments . 3-108
Logical and Temporal Assessment Conditions . 3-108
Define Variables in the Assessment Callback Section 3-109

Observers
4

Access Model Data Wirelessly by Using Observers 4-2
Observer Reference Block . 4-3
Connect Signals or Other Model Data Using an Observer Port Block 4-4
Trace Observed Items to Model Signals and Objects 4-6
Simulate a System Model with an Observer Reference Block 4-6
Verify Heat Pump Temperature by Using Observers 4-7
Convert Verification Subsystem to an Observer Reference 4-10
Observer Considerations and Limitations . 4-12

Observe Messages . 4-13
Message Bus Elements . 4-13
Add a Message Observer . 4-13
Observe a Message Signal . 4-14

vi Contents

Test Harness Software- and Processor-in-the-Loop
5

SIL Verification for a Subsystem . 5-2
Create a SIL Verification Harness for a Controller 5-2
Configure and Simulate a SIL Verification Harness 5-4
Compare the SIL Block and Model Controller Outputs 5-4

Use SIL/PIL to Verify Generated Code from an Earlier Release 5-6
Reuse Generated Code . 5-6
SIL Verification of a Subsystem using Code Generated from an Earlier

Release . 5-6

Code Generation Verification Workflow with Simulink Test 5-14

Import Test Cases for Equivalence Testing . 5-19
Settings for Test Case Simulations . 5-19
Top-Level Model . 5-19
Model Block in SIL/PIL Mode . 5-20
Model Block or Reusable Library Subsystem in a Test Harness 5-21
Back-to-Back Testing a Model Using the SIL/PIL Manager App 5-22

Test Integrated Code . 5-28
Test Integrated C Code . 5-28
Test Code in S-Functions . 5-28
S-Function Testing Example . 5-28

Test Manager Test Cases
6

Manage Test File Dependencies . 6-3
Package a Test File Using Projects . 6-3
Find Test File Dependencies and Impact . 6-4
Share a Test File with Dependencies . 6-6

Compare Model Output to Baseline Data . 6-7
Create the Test Case . 6-7
Run the Test Case and View Results . 6-7

Creating Baseline Tests . 6-10

Batch Equivalence Testing of Multiple Components 6-13

Test a Simulation for Run-Time Errors . 6-18
Configure the Model . 6-18
Create the Test Case . 6-18
Run the Test Case . 6-19
View the Error . 6-19

Automatically Create a Set of Test Cases . 6-21
Creating Test Cases from Model Elements . 6-21

vii

Generating Test Cases from a Model . 6-21

Generate Tests and Test Harnesses for a Component or Model 6-26
Open the Create Test for Component Wizard . 6-26
Select Model or Component to Test . 6-26
Set Up Test Inputs . 6-28
Test Method . 6-29
Save Test Data . 6-30
Generate the Test Harness and Test Case . 6-31

Override Model Parameters in a Test Case . 6-33

Test Two Simulations for Equivalence . 6-37

Create and Run a Back-to-Back Test . 6-43
Run the Back-to-Back Test . 6-46
View the Back-to-Back Test Results . 6-46

Testing AUTOSAR Compositions . 6-48

Automate Testing for Highway Lane Following . 6-53

Synchronize Tests . 6-63

Use External Excel or MAT-File Data in Test Cases 6-64
Data Mapping . 6-64
Create a Test Case from an Excel Spreadsheet . 6-65
Import an Excel Spreadsheet into an Existing Test Case 6-66
Add Multiple Microsoft Excel Spreadsheets as Input to a Test Case 6-67
Include Microsoft Excel Test Data in Test Results 6-67
Importing Test Data from Microsoft Excel . 6-67
Add a MAT-File as an External Input . 6-70

Create Data Files for Test Case Input . 6-72
Generate an Excel Template . 6-72
Format Test Case Data in Excel . 6-75
Create a MAT-File for Input Data . 6-75

Capture Simulation Data in a Test Case . 6-77
Add Logged Signals When Creating a Test Harness 6-77
Add Logged Signals in the Test Manager . 6-77
Capture Data from Local and Global Data Stores 6-79
Logging Leaf Signals of a Bus . 6-80

Run Tests in Multiple Releases of MATLAB . 6-83
Considerations for Testing in Multiple Releases 6-83
Add Releases Using Test Manager Preferences . 6-84
Run Baseline Tests in Multiple Releases . 6-84
Run Equivalence Tests in Multiple Releases . 6-85
Run Simulation Tests in Multiple Releases . 6-86
Assess Temporal Logic in Multiple Releases . 6-87
Collect Coverage in Multiple-Release Tests . 6-88

Examine Test Failures and Modify Baselines . 6-91
Examine Test Failure Signals and Update Baseline Test 6-91

viii Contents

Manually Update Signal Data in a Baseline . 6-93

Create and Run Test Cases with Scripts . 6-96
Create and Run a Baseline Test Case . 6-96
Create and Run an Equivalence Test Case . 6-97
Run a Test Case and Collect Coverage . 6-98
Create and Run Test Case Iterations . 6-98

Test Models Using MATLAB-Based Simulink Tests 6-100
Classes and Methods . 6-100
Creating a Baseline MATLAB-based Simulink Tests 6-101
Linking to Requirements from a MATLAB-Based Simulink Test File 6-103
Limitations of MATLAB- based Tests . 6-103

Using MATLAB-Based Simulink Tests in the Test Manager 6-105

Collect Coverage Using MATLAB-Based Simulink Tests 6-108

Test Iterations . 6-113
Create Table Iterations . 6-113
Create Scripted Iterations . 6-116
Sweep Through a Set of Parameters . 6-119

Capture Baseline Data from Iterations . 6-121

Collect Coverage in Tests . 6-124
Set Up Coverage Collection Using the Test Manager 6-124
View Coverage Results in the Test Manager . 6-126
Add Tests for Missing Coverage . 6-128
Coverage Filtering Using the Test Manager . 6-129

Test Coverage for Requirements-Based Testing 6-131

Increase Test Coverage for a Model . 6-136

Run Tests Using Parallel Execution . 6-140
When Do Tests Benefit from Using Parallel Execution? 6-140
Use Parallel Execution . 6-140

Set Signal Tolerances . 6-142
Modify Criteria Tolerances . 6-142
Change Leading Tolerance in a Baseline Comparison Test 6-142

Specify Test Properties in the Test Manager . 6-147
Test Case, Test Suite, and Test File Sections Summary 6-147
Tags . 6-149
Description . 6-149
Requirements . 6-149
System Under Test . 6-149
Simulation 1 and Simulation 2 . 6-150
Parameter Overrides . 6-151
Callbacks . 6-151
Inputs . 6-153
Simulation Outputs . 6-154
Configuration Settings Overrides . 6-154

ix

Baseline Criteria . 6-155
Equivalence Criteria . 6-156
Iterations . 6-156
Logical and Temporal Assessments . 6-157
Custom Criteria . 6-157
Coverage Settings . 6-158
Test File Options . 6-158
Test File Content . 6-159

Preferences . 6-160

Increase Coverage by Generating Test Inputs . 6-161
Overall Workflow . 6-161
Test Case Generation Example . 6-162

Process Test Results with Custom Scripts . 6-165
MATLAB Testing Framework . 6-165
Define a Custom Criteria Script . 6-165
Reuse Custom Criteria and Debug Using Breakpoints 6-166
Custom Criteria Programmatic Interface Example 6-168

Assess the Damping Ratio of a Flutter Suppression System 6-170

Create, Store, and Open MATLAB Figures . 6-173
Create a Custom Figure for a Test Case . 6-173
Include Figures in a Report . 6-174

Test Models Using MATLAB Unit Test . 6-176
Overall Workflow . 6-176
Considerations . 6-176
Comparison of Test Nomenclature . 6-176
Basic Workflow Using MATLAB® Unit Test . 6-177

Output Results for Continuous Integration Systems 6-180
Test a Model for Continuous Integration Systems 6-180
Model Coverage Results for Continuous Integration 6-182

Parametric Sweep for a Simscape Thermal Model 6-184

Projector Controller Testing Using verify and Real-Time Tests 6-190

Test Execution Order . 6-195
Single Test Case on a Single Model . 6-195
Multiple Test Cases on Multiple Models . 6-195
Multiple Test Cases in a Single Test Suite on a Single Model 6-196
Multiple Test Cases in Multiple Test Suites on a Single Model 6-197
Test Case with Parameter Overrides . 6-197

Filter Test Execution and Results . 6-199
Add Tags . 6-199
Filter Tests and Results . 6-199
Run Filtered Tests . 6-199

x Contents

Test Manager Results and Reports
7

View Test Case Results . 7-2
View Results Summary . 7-2
Visualize Test Case Simulation Output and Criteria 7-3

Debugging Test Failures Using Model Slicer . 7-7

Export Test Results . 7-16

Generate Test Results Reports . 7-17
Create a Test Results Report . 7-17
Save Reporting Options with a Test File . 7-17
Generate Reports Using Templates . 7-17

Generating a Test Results Report . 7-20

Customize Test Results Reports . 7-21
Inherit the Report Class . 7-21
Method Hierarchy . 7-21
Modify the Class . 7-22
Generate a Report Using the Custom Class . 7-24

Append Code to a Test Report . 7-25

Results Sections . 7-27
Summary . 7-28
Test Requirements . 7-28
Iteration Settings . 7-28
Errors . 7-28
Logs . 7-28
Description . 7-28
Parameter Overrides . 7-28
Coverage Results . 7-28
Aggregated Coverage Results . 7-28
Scope coverage results to linked requirements . 7-29
Add Tests for Missing Coverage . 7-29
Applied Coverage Filters . 7-29

Generate Test Specification Reports . 7-30

Customize Test Specification Reports . 7-34
Remove Content or Change Report Formatting and Section Ordering . . . 7-34
Add Content to a Test Specification Report . 7-37

Debugging Equivalence Test Failures Using Model Slicer 7-41

xi

Real-Time Testing
8

Test Models in Real Time . 8-2
Overall Workflow . 8-2
Real-Time Testing Considerations . 8-2
Complete Basic Model Testing . 8-3
Set up the Target Computer . 8-3
Configure the Model or Test Harness . 8-3
Add Test Cases for Real-Time Testing . 8-4
Assess Real-Time Execution Using verify Statements 8-7

Reuse Desktop Test Cases for Real-Time Testing . 8-9
Convert Desktop Test Cases to Real-Time . 8-9
Use External Data for Real-Time Tests . 8-9
Reuse Desktop Test Case for Real-Time Testing 8-10

Testing Custom C/C++ Code
9

Importing and Testing Custom C/C++ Code . 9-2
Import Code Using the Wizard or the API . 9-2
Code Importer Generated Artifacts . 9-2
Limitations and Workarounds . 9-3

Import Custom Code for Unit Testing Using API Commands 9-5

Conduct Unit Testing on Imported Custom Code by Using the
Wizardfilename . 9-11

Verification and Validation
10

Test Model Against Requirements and Report Results 10-2
Requirements – Test Traceability Overview . 10-2
Display the Requirements . 10-2
Link Requirements to Tests . 10-3
Run the Test . 10-4
Report the Results . 10-5

Analyze a Model for Standards Compliance and Design Errors 10-7
Standards and Analysis Overview . 10-7
Check Model for Style Guideline Violations and Design Errors 10-7

Perform Functional Testing and Analyze Test Coverage 10-9
Incrementally Increase Test Coverage Using Test Case Generation 10-9

xii Contents

Analyze Code and Test Software-in-the-Loop . 10-12
Code Analysis and Testing Software-in-the-Loop Overview 10-12
Analyze Code for Defects, Metrics, and MISRA C:2012 10-12
Test Code Against Model Using Software-in-the-Loop Testing 10-17

xiii

Test Strategies

• “Link to Requirements” on page 1-2
• “Requirements-Based Testing for Model Development” on page 1-7

1

Link to Requirements

In this section...
“Requirements Traceability Considerations” on page 1-2
“Establish Requirements Traceability for Testing” on page 1-3

Since requirements specify behavior in response to particular conditions, you can develop test inputs,
expected outputs, and assessments from the model requirements.

Requirements Traceability Considerations
Consider the following limitations working with requirements links in test harnesses:

• Some blocks and subsystems are recreated during test harness rebuild operations. Requirements
linking is not supported for these blocks and subsystems in a test harness:

• Conversion subsystems between the component under test and the sources or sinks
• Test Sequence blocks that schedule function calls
• Blocks that drive control input signals to the component under test
• Blocks that drive Goto or From blocks that pass component under test signals
• Data Store Read and Data Store Write blocks

• If you use external requirements storage, performing the following operations requires
reestablishing requirements links to model objects inside test harnesses:

• Cut/paste or copy/paste a subsystem with a test harness
• Clone a test harness
• Move a test harness from a linked block to the library block

1 Test Strategies

1-2

Establish Requirements Traceability for Testing
If you have a Simulink Test and a Requirements Toolbox™ license, you can link requirements to test
harnesses, test sequences, and test cases. Before adding links, review “Supported Requirements
Document Types” (Requirements Toolbox).

Requirements Traceability for Test Harnesses

When you edit requirements links to the component under test, the links immediately synchronize
between the test harness and the main model. Other changes to the component under test, such as
adding a block, synchronize when you close the test harness. If you add a block to the component
under test, close and reopen the harness to update the main model before adding a requirement link.

To view items with requirements links, on the Apps tab, under Model Verification, Validation, and

Test, click Requirements Manager. In the Requirements tab, click Highlight Links .

Requirements Traceability for Test Sequences

In test sequences, you can link to test steps. To create a link, first find the model item, test case, or
location in the document you want to link to. Right-click the test step, select Requirements, and add
a link or open the link editor.

To highlight or remove the highlighting from test steps that have requirements links, toggle the

requirements links highlighting button in the Test Sequence Editor toolstrip. Highlighting test
steps also highlights the model block diagram.

Requirements Traceability for Test Cases

If you use many test cases with a single test harness, link to each specific test case to distinguish
which blocks and test steps apply to it. To link test steps or test harness blocks to test cases,

1 Open the test case in the Test Manager.
2 In the left pane, in the Test Browser tab, select the test case.
3 In Simulink in the Apps tab, click Requirements Manager.
4 To link a test case to a:

• Simulink block, right-click the block and select Requirements > Link to Current Test Case
from the context menu.

• Test step, double-click the test sequence block in the test harness to open the Test Sequence
Editor. Right-click the test step and select Requirements > Link to Current Test Case from
the context menu.

Requirements Traceability Example

This example demonstrates adding requirements links to a test harness and test sequence. The model
is a component of an autopilot roll control system. This example requires Simulink Test and
Requirements Toolbox.

1 Open the test file, the model, and the harness.

open AutopilotTestFile.mldatx
open_system RollAutopilotMdlRef

 Link to Requirements

1-3

sltest.harness.open('RollAutopilotMdlRef/Roll Reference',...
'RollReference_Requirement1_3')

2 In the test harness, on the Apps tab, under Model Verification, Validation, and Test, click

Requirements Manager. In the Requirements tab, click Highlight Links .

The test harness highlights the Test Sequence block, component under test, and Test Assessment
block.

3 Add traceability to the Discrete Derivative block.

a Right-click the Discrete Derivative block and select Requirements > Open Outgoing
Links dialog.

b In the Requirements tab, click New.
c Enter the following to establish the link:

• Description: DD link
• Document type: Text file
• Document: RollAutopilotRequirements.txt
• Location: 1.3 Roll Hold Reference

1 Test Strategies

1-4

d Click OK. The Discrete Derivative block highlights.
4 To trace to the requirements document, right-click the Discrete Derivative block, and select

Requirements > DD Link. The requirements document opens in the editor and highlights the
linked text.

5 In the test harness, open the Test Sequence block. Add a requirements link that links the
InitializeTest step to the test case.

a In the Test Manager, in the left pane, in the Test Browser tab, select Requirement 1.3
Test.

 Link to Requirements

1-5

b In the test harness, double-click the test sequence block to open the Test Sequence Editor.
Right-click the InitializeTest step and select Requirements > Link to Current Test
Case from the context menu.

When the requirements link is added, the Test Sequence Editor highlights the step.

See Also

1 Test Strategies

1-6

Requirements-Based Testing for Model Development
Test an autopilot subsystem against a requirement.

This example demonstrates testing a subsystem against a requirement, using the test manager, test
harness, Test Sequence block, and Test Assessment block. The requirements document links to the
test case and test harness, and verify statements assess the component under test.

As you build your model, you can add test cases to verify the model against requirements.
Subsequent users can run the same test cases, then add test cases to accomplish further verification
goals such as achieving 100% coverage or verifying generated code.

This example tests the Roll Reference subsystem against a requirement using three scenarios. A
Test Sequence block provides inputs, and a Test Assessment block evaluates the component. The
Roll Reference subsystem is one component of an autopilot control system. Roll Reference
controls the reference angle of the aircraft's roll control system. The subsystem fails one assessment,
prompting a design change that limits the subsystem output at high input angles.

Paths and Example Files

Enter the following to store paths and file names for the example:

topModel = 'TestAndVerificationAutopilotExample';
rollModel = 'RollAutopilotMdlRef';
testHarness = 'RollReference_Requirement1_3';
testFile = 'AutopilotTestFile.mldatx';
reqDoc = 'RollAutopilotRequirements.txt';

Open the Test File and Model

Open the RollAutopilotMdlRef model. The full control system
TestAndVerificationAutopilotExample references this model.

open_system(rollModel)

 Requirements-Based Testing for Model Development

1-7

Open the test file in the Test Manager.

tf = sltest.testmanager.load(testFile);
sltest.testmanager.view;

Open the requirements document. In the test browser, expand AutopilotTestFile and Basic Design
Test Cases in the tree, and click Requirement 1.3 test. In the Requirement 1.3 test tab, expand
Requirements. Double-click on any of the requirements links to open the Requirements Editor,
where you can review the requirements.

1 Test Strategies

1-8

In the document, requirement 1.3.1 states: When roll hold mode becomes the active mode, the roll
hold reference shall be set to the actual roll angle of the aircraft, except under the conditions
described in the child requirements.

• Child requirement 1.3.1.1 states: The roll hold reference shall be set to zero if the actual roll angle
is less than 6 degrees, in either direction, at the time of roll hold engagement.

• Child requirement 1.3.1.2 states: The roll hold reference shall be set to 30 degrees in the same
direction as the actual roll angle if the actual roll angle is greater than 30 degrees at the time of
roll hold engagement.

• Child requirement 1.3.1.3 states: The roll reference shall be set to the cockpit turn knob
command, up to a 30 degree limit, if the turn knob is commanding 3 degrees or more in either
direction.

The test case creates three scenarios to test the normal conditions and exceptions in the
requirement.

The requirements document traces to the test harness using URLs that map to the Test Sequence
block and test steps. Open the test harness and highlight the component associated with reference
requirement 1.3.

sltest.harness.open([rollModel '/Roll Reference'],testHarness)
rmi('highlightModel','RollReference_Requirement1_3')

 Requirements-Based Testing for Model Development

1-9

The Test Sequence block, Test Assessment block, and component under test link to the requirements
document. Highlight requirements links by selecting Apps > Requirements Manager and then,
clicking Highlight Links in the test harness model. You can also highlight links in the Test Sequence
Editor by clicking Toggle requirements links highlighting in the toolstrip.

Test Sequence

Open the Test Sequence block.

open_system('RollReference_Requirement1_3/Test Sequence')

The Test Sequence block creates test inputs for three scenarios:

In each test, the test sequence sets a signal level, then engages the autopilot. The test sequence
checks that PhiRef is stable for a minimum time DurationLimit before it transitions to the next
signal level. For the first two scenarios, the test sequence sets the EndTest local variable to 1,
triggering the transition to the next scenario.

1 Test Strategies

1-10

These scenarios check basic component function, but do not necessarily achieve objectives such as
100% coverage.

Test Assessments

Open the Test Assessment block.

open_system('RollReference_Requirement1_3/Test Assessment')

The Test Assessment block evaluates Roll Reference. The assessment block is a library linked
subsystem, which facilitates test assessment reuse between multiple test harnesses. The block
contains verify statements covering:

• The requirement that PhiRef = Phi when Phi operates inside the low and high limits.
• The requirement that PhiRef = 0 when Phi < 6 degrees.
• The requirement that PhiRef = 30 when Phi > 30 degrees.
• The requirement that when TurnKnob is engaged, PhiRef = TurnKnob if TurnKnob >= 3

degrees.

Verify the Subsystem

To run the test, in the Test Manager, right-click Requirement 1.3 Test in the Test Browser pane, and
click Run.

The simulation returns verify statement results and simulation output in the Test Manager. The
verify_high_pos statement fails.

1 Click Results and Artifacts in the test manager.
2 In the results tree, expand Verify Statements. Click Simulink: verify_high_pos. The trace

shows when the statement fails.

 Requirements-Based Testing for Model Development

1-11

1 Click Subplots in the toolstrip and select two plots arranged vertically. Select the lower plot in
the Visualize pane.

2 In the results tree, expand Results, Requirement 1.3 Test, and Sim Output.
3 Select PhiRef and Phi. The output traces align with the verify results in the above plot.

Observe that PhiRef exceeds 30 degrees when Phi exceeds 30 degrees.

Update RollReference to limit the PhiRef signal.

1 Close the test harness.
2 Add a Saturation block to the model as shown.

1 Test Strategies

1-12

3 Set the lower limit to -30 and the upper limit to 30.
4 Link the block to its requirement. From the Requirements browser, drag requirement 1.1.2 to the

Saturation block. An icon appears on the block, and the requirement is highlighted.

Run the test again. The verify statement passes, and the output in the test manager shows that
PhiRef does not exceed 30 degrees.

close_system(rollModel,0);
close_system(topModel,0);

 Requirements-Based Testing for Model Development

1-13

close_system('RollRefAssessLib',0);
sltest.testmanager.clear;
sltest.testmanager.clearResults;
sltest.testmanager.close;
clear topModel reqDoc rollModel testHarness testFile harnessLink

1 Test Strategies

1-14

Test Harness

• “Test Harness and Model Relationship” on page 2-2
• “Test Harness Construction for Specific Model Elements” on page 2-8
• “Create Test Harnesses and Select Properties” on page 2-12
• “Refine, Test, and Debug a Subsystem” on page 2-22
• “Manage Test Harnesses” on page 2-29
• “Customize Test Harnesses” on page 2-39
• “Create Test Harnesses from Standalone Models” on page 2-46
• “Synchronize Changes Between Test Harness and Model” on page 2-50
• “Test Library Blocks” on page 2-58

2

Test Harness and Model Relationship
In this section...
“Harness-Model Relationship for a Model Component” on page 2-3
“Harness-Model Relationship for a Top-Level Model” on page 2-4
“Resolving Parameters” on page 2-5
“Test Harness Considerations” on page 2-5

A test harness is a model block diagram that you can use to test, edit, or debug a Simulink model. In
the main model, you associate a harness with a model component or the top-level model. The test
harness contains a separate model workspace and configuration set. The test harness is associated
with the main model and can be accessed through the model canvas.

When you create an external harness, a metadata XML file is also created. The XML file contains the
unique ID of the design model, which maintains the association between the model and its harness.
The metadata file does not need to be in the same folder as the model, as long as they are both on the
MATLAB® path.

You build the test harness model around the component under test, which links the harness to the
main model. If you edit the component under test in the harness, the main model updates when you
close the harness. You can generate a test harness for:

• A model component, such as a subsystem, library block, Subsystem Reference block, Model block,
or System Composer™ component. The test harness isolates the component in a separate
simulation environment. If you convert a Subsystem or Subsystem Reference block to a Model
block, the test harnesses are transferred to the model reference (see “Test Harness
Considerations” on page 2-5).

• A top-level model. The component under test is a Model block referencing the main model. You
can also build a test harness in a subsystem model.

2 Test Harness

2-2

Harness-Model Relationship for a Model Component
When you associate a test harness with a model component, the harness model workspace contains
copies of the parameters associated with the component. For example, suppose that you create a test
harness for a component that contains a Gain block and then add a second Gain block to the harness.

• The parameter g defines part of the component under test, so the harness model workspace
contains a copy of g.

• The parameter a defines part of the main model outside of the component under test, so the
harness model workspace does not contain a copy of a.

• The parameter h is the gain of the Gain block that you added to the harness. Because this block is
outside the component under test, h exists only in the harness model workspace.

 Test Harness and Model Relationship

2-3

Harness-Model Relationship for a Top-Level Model
When you associate a harness with the top level of the main model, the harness model workspace
does not contain copies of parameters relevant to the component. The component under test is a
Model block that references the main model, so the parameters remain in the main model workspace.
For example, suppose that you create a test harness for a top-level model that contains a Gain block
and then add a second Gain block to the harness.

• The component under test references the main model, and the parameter g exists in the main
model workspace. The harness model workspace does not contain a copy of g.

• The parameter h is the gain of the Gain block that you added to the harness. Because this block is
outside the component under test, h exists only in the harness model workspace.

2 Test Harness

2-4

Resolving Parameters
Parameters in the test harness resolve to the most local workspace. Parameters resolve to the
harness model workspace, then the system model workspace, then the base MATLAB workspace.

Test Harness Considerations
• You can build a test harness for these types of model components:

• Model blocks
• Subsystem Reference blocks
• Subsystem blocks
• Reusable library subsystems that have function interfaces and are at the top-level of the library
• Stateflow® blocks, including Stateflow charts, Truth Table blocks, State Transition Table

blocks, and Test Sequence blocks
• System Composer components
• C Caller blocks
• MATLAB Function blocks
• User-defined function blocks

 Test Harness and Model Relationship

2-5

• Open only one test harness at a time for each Simulink model.
• Model and test harness locking is specific to each type of synchronization. For information on

synchronization, see “Synchronization Mode” on page 2-17.
• Do not comment out the component under test in the test harness. Commenting out the

component under test might cause unexpected behavior.
• If a subsystem has a test harness, you cannot expand the subsystem contents into the model that

contains the subsystem. Delete the test harness before expanding the subsystem. For more
information, see “Expand Subsystem Contents”.

• Test harnesses attached to Subsystem models:

• Always synchronize with the underlying model
• Are created without compiling
• Do not support post-build callbacks
• Do not auto shape inputs

• Subsystem Reference blocks sync their block parameters, but not their block contents.
• When you convert a Subsystem or Subsystem Reference block to a Model block, the test

harnesses are transferred to the model reference. Harnesses on the Subsystem block are
converted to block diagram harnesses. Nested harnesses within the subsystem are copied to
identical blocks in the model reference. All transferred harnesses are internal harnesses in the
model reference. Test harnesses might be renamed when they are transferred. You can see
feedback about the harness transfer in the Complete Conversion pane of the Conversion Advisor
or at the MATLAB Command line.

These limitations apply to converting a Subsystem or Subsystem Reference block to a Model
block:

• SIL and PIL harnesses are not transferred.
• Requirements in a test harness for a subsystem are not transferred. You must copy them

manually.
• If your test harness contains a To Workspace block, the block variable is not saved in the base

workspace after the test finishes running. Upon test completion, the base workspace is restored to
its original state.

• Test harnesses are not supported for these types of Stateflow objects:

• Atomic subcharts
• Simulink based states
• Simulink functions
• MATLAB functions

• The Upgrade Advisor and XML differencing are not supported for test harness models.
• A test harness with a Signal Builder block source does not support:

• Frame-based signals
• Complex signals
• Variable-dimension signals

• For a test harness with a Test Sequence block or Stateflow chart as the source, all inputs to the
component under test must operate with the same sample time.

2 Test Harness

2-6

• These considerations apply to collecting coverage in a test harness:

• Loading coverage results to a model, or aggregating coverage results across models, requires
a model consistent with the coverage results. Therefore, to perform aggregated coverage
collection, use test harnesses configured to automatically synchronize the component under
test. Set SynchronizationMode to Synchronize on harness open and close. For more
information, see “Synchronize Changes Between Test Harness and Model” on page 2-50.

• If the test harness is configured to synchronize the component under test when you open or
close the harness, coverage results from the test harness are associated with the main model.
When you close the test harness, the coverage results remain active in memory. You can
aggregate coverage with additional results collected from the main model or another
synchronized test harness.

• If the test harness is configured to only synchronize the component under test when you
manually push or rebuild, the coverage results are associated with the test harness.

• When you close the test harness, the coverage results are removed from memory.
• If the component under test design differs between test harness and main model, you

cannot aggregate coverage results.
• You can aggregate coverage results with the main model if the component under test design

does not differ, but you must manually load the coverage results into the main model. See
the function cvload (Simulink Coverage).

For information on coverage, see “Collect Coverage in Tests” on page 6-124

See Also
“Create a Test Harness” | Model Reference Conversion Advisor

More About
• “Compare Capabilities of Model Components”

 Test Harness and Model Relationship

2-7

Test Harness Construction for Specific Model Elements
A test harness consists of one or more source blocks that drive the component under test, which
drives one or more sink blocks. Test harness construction configures signal attributes, function calls,
data stores, and execution semantics. When possible, the test harness matches signal attributes at
the sources, sinks, and component interface. For more information on selecting sources and sinks,
see “Sources and Sinks” on page 2-14.

Signal Conversion
Signal conversion subsystems adapt the signal interface of the source and sink blocks to the
graphical interface of the component. The graphical interface of the component includes input
signals, output signals, and action, trigger, or enable inputs. The test harness compiles the main
model to determine signal attributes:

• Data type
• Dimensions
• Complexity

Signal attributes are adapted to the sources during harness construction in one of two ways:

1 Source blocks that can generate signals with the compiled attributes are configured to do so.
2 If a source block cannot generate signals with the compiled attributes, signal attribute blocks in

the signal conversion subsystem adapt the output of the source blocks. Signal attribute blocks
include Reshape, Rate Transition and Data Type Conversion blocks.

By default, signal conversion subsystems are locked from editing.

Function Calls
Function Call Drivers

If the component under test has function call inputs, a Test Sequence block, MATLAB Function block,
or Stateflow chart source generates function call inputs to the component, even if you select a
different source during harness creation. To override this behavior and connect function call inputs to
your selected source type, create the test harness with the sltest.harness.create function, and
set 'DriveFcnCallWithTestSequence' to false. For example:

2 Test Harness

2-8

sltest.harness.create('Model/FcnCallSubsystem','Source','From File',...
'DriveFcnCallWithTestSequence',false)

Function Call Outputs

Function call outputs of the component under test connect to Terminator blocks.

Physical Signal Connections
Components that accept or output physical signals are supported during harness construction, but
sources and sinks are not generated. You can add physical modeling blocks to the test harness after
construction.

Bus Signals
Test harnesses configuration for bus inputs and outputs depends on the bus connection ability of the
source or sink blocks:

1 Sources and sinks that can accept a bus signal are directly connected to the component without
modification.

2 If a source cannot output a bus signal, bus signals are automatically constructed from individual
bus elements in the signal conversion subsystem.

3 If a sink cannot accept a bus signal, bus signal elements are expanded from the bus signal in the
signal conversion subsystem.

String Signals
If the component under test uses string data inputs, and your test harness source does not support
string data, string inputs are connected to Ground blocks.

String Inputs

Harness Source Selection Source Block for String Inputs
Inport Inport
Signal Editor Ground
From Workspace Ground
From File Ground
Test Sequence Ground
Chart Ground
Constant String Constant (individual string input)

Ground (bus containing string)
Ground Ground

If the component under test uses string data outputs, and your test harness sink does not support
string data, string outputs are connected to Terminator blocks.

 Test Harness Construction for Specific Model Elements

2-9

String Outputs

Harness Sink Selection Sink Block for String Outputs
Outport Outport
Scope Terminator
To Workspace Terminator
To File Terminator
Terminator Terminator

Non-Graphical Connections
In addition to the graphical interface of a component, Simulink supports several non-graphical
connections. Test harness construction also supports non-graphical connections.

Goto–From Connections

Goto-From block pairs that cross the component boundary are considered component inputs or
outputs.

• A From block without a corresponding Goto block in the component is considered a component
input signal. The test harness includes a source block with a corresponding Goto block.

• A Goto block without the corresponding From block in the component is considered a component
output signal. The test harness includes a sink block with a corresponding From block.

Data Store Memory

Data Store Read and Data Store Write blocks require a complete data store definition in the test
harness.

• If a Data Store Read or Data Store Write block lacks a corresponding Data Store Memory block in
the component, the test harness adds a Data Store Memory block.

• For a component containing only Data Store Read blocks, the test harness adds a source block
driving a Data Store Write block.

• For a component containing only Data Store Write blocks, the test harness adds a Data Store Read
block driving a sink block.

If global data store memory read or write usage cannot be determined, then Data Store Read and
Data Store Write blocks are not included in the test harness.

Simulink Function Definitions

If the component calls a Simulink Function that is not defined in the component, the test harness
adds a stub Simulink Function block matching the function call signature.

Export Function Models
Test harnesses contain a function-call scheduler for components that use the export-function
modeling style. The scheduler is a Test Sequence block, MATLAB Function block, or Stateflow chart
that contains prototype calls to the functions in your model.

The scheduler Test Sequence block includes a test step containing:

2 Test Harness

2-10

• A catalog of globally scoped Simulink Function blocks in the component.
• A list of function-call triggers accessible at the component interface.

Harness construction honors periodic function-call triggers with appropriate decimation of the
function-call event in the Test Sequence block, MATLAB Function block, or Stateflow chart.

Test harnesses include Initialize, Terminate, and Reset steps for models that contain
Initialize, Terminate, and Reset event subsystems. You can include Initialize, Terminate,
and Reset steps for other export-function models using the 'ScheduleInitTermReset' property
of sltest.harness.create.

Execution Semantics
The execution behavior of a component depends on factors such as computed sample times, solver
settings, model configuration, and parameter settings. Execution behavior also depends on run-time
events such as function-call triggers and asynchronous events. To handle these execution semantics,
test harness construction:

1 Copies configuration parameter settings from the main model into the test harness.
2 Copies required parameter definitions from the main model workspace into the test harness

model workspace.
3 Copies data dictionary settings from the main model into the test harness.
4 Honors a limited subset of sample time settings using explicit source block specifications and

Rate Transition blocks.

Other factors, such as additional blocks in the harness and solver heuristics, can cause test harness
execution to differ from the main model. The graphical and compiled interface of the component
takes precedence over other execution semantics.

Sample Time Specification
Simulink supports an array of sample times, including types that are derived during model
compilation. Test harness construction supports periodic discrete, continuous, and fixed-in-minor-step
sample times with these considerations:

• Source blocks that support the desired rate are configured to do so, and the signal conversion
subsystem contains a Signal Specification block with the rate specification.

• Test harness construction does not configure source blocks that cannot support the desired rate.

• If the desired rate is periodic discrete or fixed-in-minor-step, the test harness contains a Rate
Transition block in the signal conversion subsystem.

• If the desired rate is continuous, the execution semantics are determined by the solver. The
signal conversion subsystem does not contain a Rate Transition block.

Other sample time specifications are ignored during test harness construction. In those cases,
solver settings determine execution behavior.

See Also
“Create Test Harnesses and Select Properties” on page 2-12

 Test Harness Construction for Specific Model Elements

2-11

Create Test Harnesses and Select Properties

In this section...
“Create a Test Harness For a Top Level Model” on page 2-12
“Create a Test Harness for a Model Component” on page 2-12
“Preview and Open Test Harnesses” on page 2-12
“Change Test Harness Properties” on page 2-13
“Considerations for Selecting Test Harness Properties” on page 2-13
“Test Harness Properties” on page 2-14
“Customize Test Harness Creation Default Property Values” on page 2-19

Create a Test Harness For a Top Level Model
To create a test harness for a top-level model (including subsystem and model reference models):

1 Right-click in the Simulink model and click Test Harness > Create for Model to open the
Create Test Harness dialog box.

2 After selecting the desired options, click OK to create the test harness.

Create a Test Harness for a Model Component
To create a test harness for a single model component:

1 On the Apps tab, under Model Verification, Validation, and Test, click Simulink Test.
2 On the Tests tab, click Simulink Test Manager to open the Test Manager.
3 Create a new test file in the Test Manager.
4 Click New > Test for Model Component, which opens the Create Test For Model Component

workflow wizard.
5 Create the test harness by completing the wizard pages.

Note The Create Test for Model Component workflow wizard exposes a subset of test harness
options. If your test harness does not need to use non-default options, use the wizard to create a
harness quickly. If you need to change other options, use the Test Manager for the test harness you
created with the wizard.

For information on using the wizard and the properties it sets, see “Generate Tests and Test
Harnesses for a Component or Model” on page 6-26.

Preview and Open Test Harnesses
When a model component has a test harness, a badge appears in the lower right of the block. To view
the test harnesses, click the badge. To open a test harness, click a tile.

2 Test Harness

2-12

To view test harnesses for a model block diagram, click the pullout icon in the model canvas. To open
a test harness, click a tile.

Change Test Harness Properties

To change properties of an open test harness, click the badge in the test harness block diagram
and click Test harness properties to open the harness properties dialog box.

To change properties of test harnesses from the main model, click the Harness operations icon from
the test harness preview.

Considerations for Selecting Test Harness Properties
Before selecting test harness properties, consider the following:

• What data source you want to use for your test case input
• How you want to view or store test output

 Create Test Harnesses and Select Properties

2-13

• Whether you want to copy parameters and workspaces from the main model to the harness
• Whether you plan to edit the component under test
• How you want to synchronize changes between the test harness and model

Except for sources and sinks, you can change harness properties later using the harness properties
dialog box. To change sources and sinks after harness creation, manually remove the blocks from the
test harness and replace them with new sources and sinks.

Note The following sections describe the test harness properties in the Create Test Harness dialog
box. For information on the test harness properties in the Create Test for Model Component wizard,
see “Generate Tests and Test Harnesses for a Component or Model” on page 6-26.

Test Harness Properties
Harness Name

Test harnesses must use valid MATLAB file names.

Save Test Harnesses Externally

This option controls how the model stores test harnesses. A model stores all its test harnesses either
internally or externally. If a model already has test harnesses, this item states the harness storage
type as Harnesses saved <internally|externally>.

• When cleared, the model saves test harnesses as part of the model SLX file.
• When selected, the model saves test harnesses in separate SLX files to the current working folder,

and adds a harness information XML file to the model folder. The harness information file can be
in any location that is on the MATLAB path.

See “Manage Test Harnesses” on page 2-29.

Select Function Interface

Select the function interface to associate with the reusable library subsystem test harness. This
option appears only if the component under test is a reusable library subsystem with a function
interface.

Sources and Sinks

In the Create Test Harness dialog box, under Sources and Sinks, select the source and sink from
the respective menus. The menus provide common sources and sinks.

You can use source and sink blocks from the Simulink Sources or Sinks library. Select Custom source
or sink, and enter the path to the block. For example:

simulink/Sources/Sine Wave

simulink/Sinks/Terminator

Custom sources and sinks build the test harness with one block per port.

2 Test Harness

2-14

Create scalar inputs

When you select this property, the test harness creates scalar inputs for multidimensional signals.
The individual scalar inputs are reshaped to match the dimension of the input signals to the
component under test. This option applies to test harnesses with Inport, Constant, Signal Builder,
From Workspace, or From File source blocks. This option does not apply to Subsystem models.

Add scheduler for function-calls and rates / Generate function-call signals using

The title of this option depends on whether the component under test is a subsystem or a model. Use
a scheduler to control the number of times and the order in which blocks or subsystems are executed.
To include a scheduler block in your test harness, select a block from the drop-down list. You can use
a Test Sequence block, a MATLAB Function block, or a Stateflow chart as the scheduler.

• Add scheduler for function-calls and rates: For a model, you can use the block to call
functions and set sample times for model inputs and outputs.

• Generate function-call signals using: For a subsystem, you can use the block to call functions
in the subsystem.

For information on schedulers, see “Rate Transitions” (Embedded Coder), “Rate Transitions and
Asynchronous Blocks” (Embedded Coder), or “Schedule Simulink Algorithms by Using Stateflow”
(Stateflow)

Enable Initialize, Reset, and Terminate ports

Selecting this option exposes initialize, terminate, or reset function-call ports in the component under
test and connects the scheduler block to the ports.

This option appears when you create a test harness for a top-level model and select a block for the
Add scheduler for function-calls and rates option.

When running the test harness, if you encounter an error about executing a function call at an
initialize, reset, or terminate port, use these commands to hide and disconnect the ports.
Subsystem_name is the system under test in the test harness.

set_param(<Subsystem_name>,'ShowModelInitializePort','off');
set_param(<Subsystem_name>,'ShowModelResetPorts','off');
set_param(<Subsystem_name>,'ShowModelTerminatePort','off');

Add Separate Assessment Block

Select Add separate assessment block to include a separate Test Assessment block in the test
harness.

A Test Assessment block is a separate Test Sequence block configured with properties commonly
used for verifying the component under test. For more information, see “Assess Simulation and
Compare Output Data” on page 3-14 and “Assess Model Simulation Using verify Statements” on
page 3-18.

Log Output Signals

Select Log output signals to log all output signals of the component under test. You can use this
option only when creating a new harness. Signals are logged during test case execution and return
test results. If an output signal does not have a name or a propagated name, it is assigned one in the
harness using the format <component under test name>:<output port number>. To remove a

 Create Test Harnesses and Select Properties

2-15

signal from being logged, open the harness, right-click the signal, and select Stop Logging Selected
Signals.

Open Harness After Creation

Clear Open Harness After Creation to create the test harness without opening it. This can be
useful creating multiple test harnesses in succession.

Create without compiling the model

Creating a test harness without compiling the model can be useful if you are prototyping a design
that cannot yet compile. When you create a test harness without compiling the main model:

• Parameters are not copied to the test harness workspace.
• The main model configuration is not copied to the test harness.
• The test harness does not contain conversion subsystems.

You may need to add blocks such as signal conversion blocks to the test harness. You can rebuild the
harness when you are ready to compile the main model. For more information, see “Synchronize
Changes Between Test Harness and Model” on page 2-50.

Test harnesses for Subsystem models are created without compiling the model.

Verification Modes

The test harness verification mode determines the type of block generated in the test harness.

• Normal: A Simulink block diagram.
• Software-in-the-Loop (SIL): The component under test references generated code,

operating as software-in-the-loop. Requires Embedded Coder®.
• Processor-in-the-Loop (PIL): The component under test references generated code for a
specific processor instruction set, operating as processor-in-the-loop. Requires Embedded Coder.

Subsystem model test harnesses do not support SIL or PIL verification.

Note Keep the SIL or PIL code in the test harness synchronized with the latest component design. If
you select SIL or PIL verification mode without selecting Rebuild harness on open, your SIL or PIL
block code might not reflect recent updates to the main model design. To regenerate code for the SIL
or PIL block in the test harness, select Rebuild Harness > Update Harness Configuration
Settings and Model Workspace.

Use generated code to create SIL/PIL block

If generated code for the SIL/PIL block already exists, select this property to use that existing code
instead of regenerating the code. This option is available only for subsystem harnesses. It does not
apply to Subsystem model test harnesses.

Build folder

Specify the folder that contains the generated code for the SIL/PIL block. This option is available only
if you selected Use generated code to create SIL/PIL block.

2 Test Harness

2-16

Post-create callback method

You can customize your test harness using one or more post-create callbacks. A post-create callback
is a function that runs after the harness is created. For example, your callback can set up signal
logging, add custom blocks, or change the harness simulation times. If you specify more than one
callback, separate them using commas. The callbacks run in the order that they are listed. For more
information, see “Customize Test Harnesses” on page 2-39. This option does not apply to Subsystem
model test harnesses.

Rebuild harness on open

When you select this property, the test harness rebuilds every time you open it. If you specified to use
existing generated code for a SIL/PIL subsystem using sltest.harness.create or
sltest.harness.set, the harness rebuild uses that code instead of regenerating it. For details on
the rebuild process, see “Synchronize Changes Between Test Harness and Model” on page 2-50.
This option does not apply to Subsystem model test harnesses.

Update Configuration Parameters and Model Workspace data on rebuild

When you select this property, configuration parameters and model workspace data update when you
rebuild the harness. For details on the rebuild process, see “Synchronize Changes Between Test
Harness and Model” on page 2-50. This option does not apply to Subsystem model test harnesses.

Post-rebuild callback method

You can customize your test harness using a post-rebuild callback. A post-rebuild callback is a
function that runs after the harness is rebuilt. For example, your callback can set up signal logging,
add custom blocks, or change the harness simulation times. For more information, see “Customize
Test Harnesses” on page 2-39. This option does not apply to Subsystem model test harnesses.

Synchronization Mode

Synchronization mode controls when changes to the component under test are synced to the main
model, and when changes to the harness owner are synced into a test harness. The synchronization
mode also affects model and harness locking.

For additional information and limitations, see “Set Synchronization for a New Test Harness” on page
2-50 and “Model and Test Harness Locking” on page 2-32.

 Create Test Harnesses and Select Properties

2-17

Synchronization Type Description Availability Model, CUT, and
Harness Locking
When Harness Is
Open

Synchronize on
harness open and
close

When the test harness
opens, the test harness
components and
parameters synchronize
from the model to the
test harness. When the
test harness closes, the
same elements
synchronize from the
harness to the model.

Available for:

• Subsystems,
including Stateflow
charts and MATLAB
Function blocks

• For Subsystem
Reference blocks,
only the block
parameters are
synchronized

• Model blocks
• S-function blocks

Not available for:

• Block diagrams
• SIL/PIL harnesses
• Subsystem model

harnesses

The main model and
harness are unlocked
for all types of CUTs.

Subsystem CUTs in the
model are locked.
Subsystem CUTs in the
harness are unlocked,

Synchronize on
harness open

When the harness
opens, the harness
components and
parameters synchronize
from the model to the
test harness.

Available for:

• Block diagrams
• Subsystems,

including Stateflow
charts and MATLAB
Function blocks

• For Subsystem
Reference blocks,
only the block
parameters are
synchronized

• Model reference
blocks

• S-function blocks

Not available for:

• SIL/PIL harnesses
• Subsystem model

harnesses

The main model and
harness are unlocked
for all types of CUTs.

Subsystem CUTs in the
model and the harness
are locked.

2 Test Harness

2-18

Synchronization Type Description Availability Model, CUT, and
Harness Locking
When Harness Is
Open

Synchronize only
during push and
rebuild

Synchronizes when you
click Push Changes or
Rebuild Harness. Push
synchronizes changes
from the test harness to
the model. Rebuild
synchronizes changes
from the model to the
test harness.

Available for:

• Subsystems,
including Stateflow
charts and MATLAB
Function blocks

• Model reference
blocks

• S-function blocks
• Subsystem models,

which always
synchronize on the
push and rebuild
only.

Not available for:

• Block diagrams
• SIL/PIL harnesses
• Components in

libraries

The main model,
harness, and all types of
CUTs in the model and
harness, including
subsystems, are
unlocked.

Synchronize only
during rebuild

Synchronizes only when
you click Rebuild
Harness. Changes
synchronize from the
model to the test
harness.

Available for:

• Block diagrams
• Model reference

blocks
• SIL/PIL verification

mode components

Not available for:

• Subsystems,
including Stateflow
charts and MATLAB
Function blocks

• S-function blocks
• Components in

libraries

The main model,
harness, and all types of
CUTs in the model are
unlocked. All types of
CUTs in the harness are
unlocked, except
SIL/PIL verification
mode components,
which are locked and
masked.

Customize Test Harness Creation Default Property Values
To set default property values for the creation of new test harnesses, use an sl_customization file
or the setHarnessCreateDefaults function. All newly created test harnesses use the new default
values.

 Create Test Harnesses and Select Properties

2-19

To see the current default test harness property values, use
sltest.harness.getHarnessCreateDefaults.

For an individual test harness, you can change the property values from the default values by using
the Create Test Harness dialog box or the sltest.harness.create function. Using either of these
options does not change the default values used when creating a new test harness. See also “Test
Harness Properties” on page 2-14 and “Change Test Harness Properties” on page 2-13.

Set Defaults by Using an sl_customization.m File

To change the default property values used when creating new test harnesses, you can create an
sl_customization.m file.

1 Create an sl_customization.m file and specify the new default property values.

You can set all name-value arguments of sltest.harness.create, except where noted.

This sample sl_customization.m file sets the harness name to myTestHarness, sets a post-
create callback to use the addHarnessAnnotation function, saves the harness internally, and
logs outputs:

function sl_customization(cm)
 % Create the struct with the harness options
 myStruct.Name="myTestHarness"
 myStruct.PostCreateCallback = "addHarnessAnnotation";
 myStruct.SaveExternally = false;
 myStruct.LogOutputs = true;

 % Invoke harness customization
 cObj = cm.SimulinkTestCustomizer;
 cObj.setHarnessCreateDefaults(myStruct);
end

2 Save the sl_customization.m file.
3 Add the file to the MATLAB path.
4 Register the new customizations by reloading Simulink or by using

sl_refresh_customizations. For more information, see “Register Customizations with
Simulink”.

Note When you register a file, its values become the default property values. All new test
harnesses use the default property values and all previously registered values are cleared.

To view the customized default values, use sltest.harness.getHarnessCreateDefaults.

Set Defaults by Using the setHarnessCreateDefaults Function

You can also use sltest.harness.setHarnessCreateDefaults to set the default property
values. You can set any of the name-value pair properties described in sltest.harness.create,
except where noted. Using sltest.harness.setHarnessCreateDefaults saves and registers
the default property values. However, if you already set and registered values using an
sl_customization.m file, using sltest.harness.setHarnessCreateDefaults overwrites the
values specified in the file.

2 Test Harness

2-20

See Also
sltest.harness.setHarnessCreateDefaults |
sltest.harness.getHarnessCreateDefaults | Test Sequence

Related Examples
• “Test Harness and Model Relationship” on page 2-2
• “Synchronize Changes Between Test Harness and Model” on page 2-50
• “Register Customizations with Simulink”
• “Manage Test Harnesses” on page 2-29
• “Customize Test Harnesses” on page 2-39

 Create Test Harnesses and Select Properties

2-21

Refine, Test, and Debug a Subsystem
In this section...
“Model and Requirements” on page 2-22
“Create a Harness for the Controller” on page 2-24
“Inspect and Refine the Controller” on page 2-25
“Add Test Inputs and Test the Controller” on page 2-25
“Debug the Controller” on page 2-26

Test harnesses provide a development and testing environment that leaves the main model design
intact. You can test a functional unit of your model in isolation without altering the main model. This
example demonstrates refining and testing a controller subsystem using a test harness. The main
model is a controller-plant model of an air conditioning/heat pump unit. The controller must operate
according to several simple requirements.

Model and Requirements
1 Access the model. Enter

cd(fullfile(docroot,'toolbox','sltest','examples'))
2 Copy this model file and supporting files to a writable location on the MATLAB path:

sltestHeatpumpExample.slx
sltestHeatpumpBusPostLoadFcn.mat
PumpDirection.m

3 Open the model.

open_system('sltestHeatpumpExample')

2 Test Harness

2-22

In the example model:

• The controller accepts the room temperature and the set temperature inputs.
• The controller output is a bus with signals controlling the fan, heat pump, and the direction of the

heat pump (heat or cool).
• The plant accepts the control bus. The heat pump and the fan signals are Boolean, and the heat

pump direction is specified by +1 for cooling and -1 for heating.

The test covers four temperature conditions. Each condition corresponds to one operating state with
fan, pump, and pump direction signal outputs.

Temperature condition System
state

Fan
command

Pump
command

Pump
direction

|Troom - Tset| < DeltaT_fan idle 0 0 0
DeltaT_fan <= |Troom - Tset| <
DeltaT_pump

fan only 1 0 0

|Troom - Tset| >= DeltaT_pump and
Tset < Troom

cooling 1 1 -1

 Refine, Test, and Debug a Subsystem

2-23

Temperature condition System
state

Fan
command

Pump
command

Pump
direction

|Troom - Tset| >= DeltaT_pump and
Tset > Troom

heating 1 1 1

Create a Harness for the Controller
1 Right-click the Controller subsystem and select Test Harness > Create for ‘Controller’.
2 Set the harness properties:

In the Basic Properties tab:

• Name: devel_harness1
• Clear Save test harness externally
• Sources and Sinks: None and Scope
• Clear Add separate assessment block
• Select Open harness after creation

3 Click OK to create the test harness.

2 Test Harness

2-24

Inspect and Refine the Controller
1 In the test harness, double-click Controller to open the subsystem.
2 Connect the chart to the Inport blocks.

3 In the test harness, click the Save button to save the test harness and model.

Add Test Inputs and Test the Controller
1 Navigate to the top level of devel_harness1.
2 Create a test input for the harness with a constant Tset and a time-varying Troom. Connect a

Constant block to the Tset input and set the value to 75.
3 Add a Sine Wave block to the harness model to simulate a temperature signal. Connect the Sine

Wave block to the conversion subsystem input Troom_in.
4 Double-click the Sine Wave block and set the parameters:

• Amplitude: 15
• Bias: 75

 Refine, Test, and Debug a Subsystem

2-25

• Frequency: 2*pi/3600
• Phase (rad): 0
• Sample time: 1
• Select Interpret vector parameters as 1–D.

5 Connect Inport blocks to the Data Store Write inputs.

6 In the Configuration Parameters dialog box, in the Data Import/Export pane, select Input and
enter u. u is an existing structure in the MATLAB base workspace.

7 In the Solver pane, set Stop time to 3600.
8 Open the scope in the test harness and change the layout to show three plots.
9 Click Run to simulate.

Debug the Controller
1 Observe the controller output. fan_cmd is 1 during the IDLE condition where |Troom - Tset|

< DeltaT_fan.

This is a bug. fan_cmd should equal 0 at IDLE. The fan_cmd control output must be changed for
IDLE.

2 Test Harness

2-26

2 In the harness model, open the Controller subsystem.
3 Open controller_chart.
4 In the IDLE state, fan_cmd is set to return 1. Change fan_cmd to return 0. IDLE is now:

IDLE
entry:
fan_cmd = 0;
 pump_cmd = 0;
 pump_dir = 0;

5 Simulate the harness model again and observe the outputs.

 Refine, Test, and Debug a Subsystem

2-27

6 fan_cmd now meets the requirement to equal 0 at IDLE.

See Also

Related Examples
• “Test Downshift Points of a Transmission Controller” on page 3-77

2 Test Harness

2-28

Manage Test Harnesses
In this section...
“Internal and External Test Harnesses” on page 2-29
“Manage External Test Harnesses” on page 2-29
“Convert Between Internal and External Test Harnesses” on page 2-30
“Preview and Open Test Harnesses” on page 2-31
“Model and Test Harness Locking” on page 2-32
“Find Test Cases Associated with a Test Harness” on page 2-32
“Export Test Harnesses to Standalone Models” on page 2-33
“Move and Clone Test Harnesses” on page 2-33
“Clone and Export a Test Harness to a Separate Model” on page 2-35
“Delete Test Harnesses Programmatically” on page 2-37
“Export Test Harness to Previous Version” on page 2-38

Internal and External Test Harnesses
You can save test harnesses internally as part of your model SLX file, or externally in separate SLX
files. A model stores all test harnesses either internally or externally; it is not possible to use both
types of harness storage in one model. You select internal or external test harness storage when you
create the first test harness. If your model already has test harnesses, you can convert between the
harness storage types.

If you store your model in a configuration management system, consider using external test
harnesses. External test harnesses enable you to create or change a harness without changing the
model file. If you plan to share your model often, consider using internal test harnesses to simplify file
management. Creating or changing an internal test harness changes your model SLX file. Both
internal and external test harnesses offer the same synchronization, push, rebuild, and badge
interface functionality.

See “Create Test Harnesses and Select Properties” on page 2-12.

Manage External Test Harnesses
Harnesses stored externally use a separate SLX file for each harness, and a
<modelName>_harnessInfo.xml file that contains metadata linking the model and the harnesses.
Changing test harnesses can change the harnessInfo.xml file. The metadata and the model are
linked using a unique ID for the model. The test harness metadata XML file is created and stored by
default in the same folder as the model. You can move the metadata XML file to a different folder on
the MATLAB path, if desired. The link between the model and its harnesses persists as long as the
harness metadata file, model, and harnesses are all on the MATLAB path.

Follow these guidelines for external test harnesses:

Warning Do not delete or make any manual changes to the harnessInfo.xml file. Deleting the
harnessInfo.xml file might sever the relationship between the model and harnesses, which cannot
be regenerated from the model.

 Manage Test Harnesses

2-29

• The harnessInfo.xml file must be writable to save changes to the test harness or the main
model.

• Folders containing test harness SLX files must be on the MATLAB path.
• If the test harness harnessInfo.xml file is not in the same folder as the model, the XML file or

its folder must be on the MATLAB path.
• If you convert internal test harnesses to external test harnesses, the new SLX files save to the

current working folder.
• If you convert external test harnesses to internal test harnesses, the external SLX files can be

anywhere on the MATLAB path.
• If your model uses external test harnesses, only create a copy of your model using Save > Save

as. Using Save as copies external test harnesses to the destination folder of the new model,
renames the harnesses, and keeps the harness information current.

Copying the model file on disk will not copy external harnesses associated with the model.
• Only change or delete test harnesses using the Simulink UI or commands:

• To delete test harnesses, use the thumbnail UI or the sltest.harness.delete command.
• To rename test harnesses, use the harness properties UI or the sltest.harness.set

command.
• To make a copy of an externally saved test harness, use the sltest.harness.clone

command or save the test harness to a new name using Save > Save as.

Deleting or renaming harness files outside of Simulink causes an inaccurate harnessInfo.xml
file and problems loading test harnesses.

Convert Between Internal and External Test Harnesses
You can change how your model stores test harnesses at different phases of your model lifecycle. For
example:

• Develop your model using internal test harnesses so that you can more easily share the model for
review. When you complete your design and place the model under change control, convert to
external harnesses.

• Use the configuration management model as the starting point for a new design. Test the existing
model with external harnesses to avoid modifying it. Then, create a copy of the existing model.
Convert to internal harnesses for the new development phase.

To change the test harness storage to external (or internal):

1 Navigate to the top of the main model.
2 On the Apps tab, under Model Verification, Validation, and Test, click Simulink Test. Then, on

the Tests tab, click Manage Test Harnesses > Convert to External Harnesses or Convert to
Internal Harnesses.

3 A dialog box provides information on the conversion procedure and the affected test harnesses.
Click Yes to continue.

The harnesses are converted.
4 The conversion to external test harnesses creates an SLX file for each test harness and a harness

information XML file <modelName>_harnessInfo.xml.

2 Test Harness

2-30

Inversely, conversion to internal test harnesses moves the test harness SLX files and the
harnessInfo.xml file.

Preview and Open Test Harnesses
When a model component has a test harness, a badge appears in the lower right of the block. To view
the test harnesses, click the badge. To open a test harness, click a tile.

 Manage Test Harnesses

2-31

To view test harnesses for a model block diagram, click the pullout icon in the model canvas. To open
a test harness, click a tile.

Model and Test Harness Locking
Model and test harness locking is specific to each type of synchronization. For information, see
“Synchronization Mode” on page 2-17.

Find Test Cases Associated with a Test Harness

To list open test cases that refer to the test harness, click the badge in the test harness canvas.
You can click a test case name and navigate to the test case in the Test Manager.

2 Test Harness

2-32

Export Test Harnesses to Standalone Models
You can export test harnesses to standalone models, which is useful for archiving test harnesses or
sharing a test harness design without sharing the model.

• To export an individual test harness:

1 From the individual harness model, on the Apps tab, under Model Verification, Validation,
and Test, click Simulink Test.

2 In the Harness tab, click Detach and Export.
3 In the Export Test Harness to Independent Model dialog box, click OK.
4 In the Save As dialog box, enter a file name for the standalone harness model and click OK.
5 The harness converts to a standalone model.

Converting removes the harness from the main model and breaks the relationship to the main
model. If a model has only one harness, its harnessInfo.xml file is deleted. If a model has
more than one harness and you delete one of them, the harnessInfo.xml file is updated.

• To export all harnesses in a model:

1 Navigate to the top level of the model. Do not select any blocks.
2 On the Apps tab, under Model Verification, Validation, and Test, click Simulink Test.
3 In the Harness tab, click Detach and Export.
4 In the Export Test Harness to Independent Model dialog box, click OK.
5 In the Save As dialog box, enter a file name for the separate model and click OK.
6 All test harnesses are exported and converted into standalone models.

Exporting removes the harnesses from the main model, deletes the harnessInfo.xml file,
and breaks the relationships to the main model.

See sltest.harness.export.

Move and Clone Test Harnesses
Simulink Test gives you the ability to move or clone test harnesses from a source owner to a
destination owner without having to compile the model. You can move or clone:

• Subsystem harnesses across subsystems. The destination subsystem could also be in a different
model.

• Harnesses for library components across libraries.
• Subsystem Reference block harnesses to other Subsystem Reference block harnesses.
• Subsystem Reference block harnesses to and from Subsystem model harnesses.

To move or clone harnesses, right-click the Simulink canvas and select Test Harness > Manage
Test Harnesses. The Manage Test Harness dialog box opens and lists the test harnesses associated
with the subsystem or block specified in Filter by harness owner. Click Actions to access the Move
and Clone options.

 Manage Test Harnesses

2-33

Select the destination path and name your test harness.

2 Test Harness

2-34

Test Harness Transfer When Converting Subsystems to Model References

When you convert a Subsystem or Subsystem Reference block to a Model block, the test harnesses
are transferred to the model being referenced. Harnesses on the Subsystem block are converted to
block diagram harnesses. Nested harnesses in subsystems are copied to identical blocks in the Model
block. All transferred harnesses are internal harnesses in the model reference. Test harnesses might
be renamed when they are transferred. You can see feedback about the harness transfer in the
Complete Conversion pane of the Conversion Advisor or at the MATLAB command line.

These limitations apply to converting a Subsystem or Subsystem Reference block to a Model block:

• SIL and PIL harnesses are not transferred.
• Requirements in a test harness for a subsystem are not transferred. You must copy them manually.

Clone and Export a Test Harness to a Separate Model
This example demonstrates cloning an existing test harness and exporting the cloned harness to a
separate model. This can be useful if you want to create a copy of a test harness as a separate model,
but leave the test harness associated with the model component.

High-level Workflow
1 If you don't know the exact properties of the test harness you want to clone, get them using

sltest.harness.find. You need the harness owner ID and the harness name.
2 Clone the test harness using sltest.harness.clone.
3 Export the test harness to a separate model using sltest.harness.export. Note that there is

no association between the exported model and the original model. The exported model stands
alone.

Open the Model and Save a Local Copy
model = 'sltestTestSequenceExample';
open_system(model)

Save the local copy in a writable location on the MATLAB path.

 Manage Test Harnesses

2-35

Get the Properties of the Source Test Harness

properties = sltest.harness.find([model '/shift_controller'])

properties =

 struct with fields:

 model: 'sltestTestSequenceExample'
 name: 'controller_harness'
 description: ''
 type: 'Testing'
 ownerHandle: 10.0199
 ownerFullPath: 'sltestTestSequenceExample/shift_controller'
 ownerType: 'Simulink.SubSystem'
 isOpen: 0
 canBeOpened: 1
 verificationMode: 0
 saveExternally: 0
 rebuildOnOpen: 0
 rebuildModelData: 0
 postRebuildCallback: ''
 graphical: 0
 origSrc: 'Test Sequence'
 origSink: 'Test Assessment'
 synchronizationMode: 0
 existingBuildFolder: ''
 functionInterfaceName: ''

Clone the Test Harness

Clone the test harness using sltest.harness.clone, the ownerFullPath and the name fields of the
harness properties structure.

sltest.harness.clone(properties.ownerFullPath,properties.name,'ControllerHarness2')

Save the Model

Before exporting the harness, save changes to the model.

save_system(model)

Export the Test Harness to a Separate Model

Export the test harness using sltest.harness.export. The exported model name is
ControllerTestModel.

sltest.harness.export([model '/shift_controller'],'ControllerHarness2',...
 'Name','ControllerTestModel')

2 Test Harness

2-36

clear('model')
clear('properties')
close_system('sltestTestSequenceExample',0)

Delete Test Harnesses Programmatically
This example shows how to delete test harnesses programmatically. Deleting using the programmatic
interface can be useful when your model has multiple test harnesses at different hierarchy levels.
This example demonstrates how to create four test harnesses and then, delete them.

1. Open the model

open_system('sltestCar');

2. Create two harnesses for the transmission subsystem, and two harnesses for the
transmission ratio subsystem.

sltest.harness.create('sltestCar/transmission');
sltest.harness.create('sltestCar/transmission');
sltest.harness.create('sltestCar/transmission/transmission ratio');
sltest.harness.create('sltestCar/transmission/transmission ratio');

3. Find the harnesses in the model.

test_harness_list = sltest.harness.find('sltestCar')

test_harness_list =

 1x5 struct array with fields:

 model
 name

 Manage Test Harnesses

2-37

 description
 type
 ownerHandle
 ownerFullPath
 ownerType
 isOpen
 canBeOpened
 verificationMode
 saveExternally
 rebuildOnOpen
 rebuildModelData
 postRebuildCallback
 graphical
 origSrc
 origSink
 synchronizationMode
 existingBuildFolder
 functionInterfaceName

4. Delete the harnesses.

for k = 1:length(test_harness_list)
 sltest.harness.delete(test_harness_list(k).ownerFullPath,...
 test_harness_list(k).name)
end

close_system('sltestCar',0);

Export Test Harness to Previous Version
When you export a Simulink model that has one or more test harnesses to a previous MATLAB
version, the impact on the harnesses depends on whether they are internal or external.

• For models with internal harnesses, the harnesses stay internal and are exported with the model.
• For models with external harnesses, the harnesses in the exported model are converted to internal

harnesses. To change the internal harnesses back to external, see “Convert Between Internal and
External Test Harnesses” on page 2-30.

You cannot export internal or external harnesses without also exporting their parent model to a
previous version. To work around this restriction, export the harness to a standalone model, export
the harness model to the previous version, and then import it into the main model. After importing
the harness, check all of the harness settings. You might need to reset some properties, such as the
synchronization mode and rebuild. See “Export Test Harnesses to Standalone Models” on page 2-33
and “Change Test Harness Properties” on page 2-13.

See Also
sltest.harness.create | sltest.harness.clone | sltest.harness.delete |
sltest.harness.export | sltest.harness.find | sltest.harness.load |
sltest.harness.open | sltest.harness.move | Model Reference Conversion Advisor

More About
• “Test Harness and Model Relationship” on page 2-2

2 Test Harness

2-38

Customize Test Harnesses
In this section...
“Callback Function Definition and Harness Information” on page 2-39
“Display Harness Information struct Contents” on page 2-41
“Share Data Between Callbacks” on page 2-41
“Customize a Test Harness to Create Mixed Source Types” on page 2-42
“Test Harness Callback Example” on page 2-43

You can customize a test harness by using one or more functions that run as callbacks after creating
the test harness. You can use one function to run as a callback for rebuilding the test harness. In the
function, write the commands to customize your test harness. For example, you can create functions
to:

• Connect custom source or sink blocks.
• Add a plant subsystem for closed-loop testing.
• Change the configuration set.
• Enable signal logging.
• Change the simulation stop time.

To customize a test harness using callback functions:

1 Create the callback function.
2 In the function, use the Simulink programmatic interface to script the commands to customize

the test harness. For more information, see the functions listed in “Programmatic Model Editing”.
3 Specify the function or functions as the post-create or a single function as a post-rebuild

callback:

• For a new test harness,

• If you are using the UI, enter the function names in the Post-create callback method,
separated by commas, or a single function name in the Post-rebuild callback method in
the Create Test Harness dialog box.

• If you are using sltest.harness.create, specify the function as the
PostCreateCallback or PostRebuildCallback value. For the
PostCreateCallback, you can specify more than one function.

• For an existing test harness,

• If you are using the UI, enter the function name in Post-rebuild callback method in the
harness properties dialog box.

• If you are using sltest.harness.set, specify the function as the
PostRebuildCallback value.

Another way to customize test harnesses is by setting your own defaults for creating harnesses. For
more information, see “Create Test Harnesses and Select Properties” on page 2-12.

Callback Function Definition and Harness Information
The callback function declaration is

 Customize Test Harnesses

2-39

function myfun(x)

where myfun is the function name and myfun accepts input x. The x input is a struct of information
about the test harness automatically created when the test harness uses the callback. You can choose
the function and argument names.

For example, define a harness callback function harnessCustomization.m:

function harnessCustomization(harnessInfo)

% Script commands here to customize your test harness.

end

In this example, harnessInfo is the struct name and harnessCustomization is the function
name. When the create or rebuild operation calls harnessCustomization, harnessInfo is
populated with information about the test harness, including handles to the test harness model, main
model, and blocks in the test harness.

For example, using harnessCustomization as a callback for the following test harness:

populates harnessInfo with handles to three sources, one sink, the main model, harness model,
harness owner, component under test, and conversion subsystems:

harnessInfo =

 struct with fields:

 MainModel: 2.0001
 HarnessModel: 1.1290e+03
 Owner: 17.0001
 HarnessCUT: 201.0110
 DataStoreMemory: []
 DataStoreRead: []
 DataStoreWrite: []
 Goto: []
 From: []
 GotoTag: []
 SimulinkFunctionCaller: []
 SimulinkFunctionStub: []
 Sources: [1.1530e+03 1.1540e+03 1.1550e+03]
 Sinks: 1.1630e+03
 AssessmentBlock: []

2 Test Harness

2-40

 InputConversionSubsystem: 1.1360e+03
 OutputConversionSubsystem: 1.1560e+03
 CanvasArea: [215 140 770 260]

Use the struct fields to customize the test harness. For example:

• To add a Constant block named ConstInput to the test harness, get the name of the test harness
model, then use the add_block function.

harnessName = get_param(harnessInfo.HarnessModel,'Name');
block = add_block('simulink/Sources/Constant',...
 [harnessName '/ConstInput']);

• To get the port handles for the component under test, get the 'PortHandles' parameter for
harnessInfo.HarnessCUT.

CUTPorts = get_param(harnessInfo.HarnessCUT,'PortHandles');

• To get the simulation stop time for the test harness, get the 'StopTime' parameter for
harnessInfo.HarnessModel.

st = get_param(harnessInfo.HarnessModel,'StopTime');

• To set a 16 second simulation stop time for the test harness, set the 'StopTime' parameter for
harnessInfo.HarnessModel.

set_param(harnessInfo.HarnessModel,'StopTime','16');

Display Harness Information struct Contents
To list the harness information for your test harness:

1 In the callback function, add the line

disp(harnessInfo)
2 Create or rebuild a test harness using the callback function.
3 When you create or rebuild the test harness, the harness information structure contents are

displayed on the command line.

Share Data Between Callbacks
Callback scripts are evaluated in the MATLAB base workspace. To share data between callback
scripts, use assignin and evalin to store and retrieve data from the base workspace. For example,

assignin('base','a',2);
a = evalin('base','a');

For parallel execution, post-load and cleanup callbacks are evaluated on the parallel MATLAB worker,
where the callbacks have their own base workspaces. Variables created in a test case pre-load
callback and test file and test suite setup callbacks are also available in the parallel MATLAB worker
base workspace. Prior to execution, the base workspace variables are transferred from the client
MATLAB to the parallel MATLAB workers.

 Customize Test Harnesses

2-41

Customize a Test Harness to Create Mixed Source Types
This example harness callback function connects a Constant block to the third component input of
this example test harness.

The function follows the procedure:

1 Get the harness model name.
2 Add a Constant block.
3 Get the port handles for the Constant block.
4 Get the port handles for the input conversion subsystem.
5 Get the handles for lines connected to the input conversion subsystem.
6 Delete the existing Inport block.
7 Delete the remaining line.
8 Connect a new line from the Constant block to input 3 of the input conversion subsystem.

function harnessCustomization(harnessInfo)

% Get harness model name:
harnessName = get_param(harnessInfo.HarnessModel,'Name');

% Add Constant block:
constBlock = add_block('simulink/Sources/Constant',...
 [harnessName '/ConstInput']);

% Get handles for relevant ports and lines:
constPorts = get_param(constBlock,'PortHandles');
icsPorts = get_param(harnessInfo.InputConversionSubsystem,...
 'PortHandles');
icsLineHandles = get_param...
 (harnessInfo.InputConversionSubsystem,'LineHandles');

% Delete the existing Inport block and the adjacent line:
delete_block(harnessInfo.Sources(3));
delete_line(icsLineHandles.Inport(3));

% Connect the Constant block to the input
% conversion subsystem:
add_line(harnessInfo.HarnessModel,constPorts.Outport,...
 icsPorts.Inport(3),'autorouting','on');

end

2 Test Harness

2-42

Test Harness Callback Example
This example shows how to use a post-create callback to customize a test harness. The callback
changes one harness source from an Inport block to Constant block and enables signal logging in the
test harness.

The Model

In this example, you create a test harness for the Roll Reference subsystem.

open_system('RollAutopilotMdlRef')

 Customize Test Harnesses

2-43

Get Path to the Harness Customization Function

cbFile = 'harnessSourceLogCustomization.m';

The Customization Function and Test Harness Information

The function harnessSourceLogCustomization changes the third source block, and enables
signal logging on the component under test inputs and outputs. You can read the function by
entering:

 type(cbFile)

As an alternative to including output logging code in the callback, you can use Log Output Signals
in the Create New Harness dialog box, or use 'LogHarnessOutputs',true as an input to
sltest.harness.create. These options log all component under test output signals in the test
harness and return test results for those signals.

The function harnessSourceLogCustomization uses an argument. The argument is a struct
listing test harness information. The information includes handles to blocks in the test harness,
including:

• Component under test
• Input subsystems
• Sources and sinks
• The harness owner in the main model

For example, harnessInfo.Sources lists the handles to the test harness source blocks.

Create the Customized Test Harness

1. In the RollAutopilotMdlRef model, right-click the Roll Reference subsystem and select Test
Harness > Create for Roll Reference.

2. In the harness creation dialog box, for Post-create callback method, enter
harnessSourceLogCustomization.

3. Click OK to create the test harness. The harness shows the signal logging and simulation stop time
specified in the callback function.

You can also use the sltest.harness.create function to create the test harness, specifying the
callback function with the 'PostCreateCallback' name-value pair.

sltest.harness.create('RollAutopilotMdlRef/Roll Reference',...
 'Name','LoggingHarness',...
 'PostCreateCallback','harnessSourceLogCustomization');

sltest.harness.open('RollAutopilotMdlRef/Roll Reference','LoggingHarness');

2 Test Harness

2-44

close_system('RollAutopilotMdlRef',0);

See Also
sltest.harness.create | sltest.harness.set

Related Examples
• “Create Test Harnesses and Select Properties” on page 2-12

 Customize Test Harnesses

2-45

Create Test Harnesses from Standalone Models
In this section...
“Test Harness Import Workflow” on page 2-46
“Component Compatibility for Test Harness Import” on page 2-46
“Import a Standalone Model as a Test Harness” on page 2-47

Standalone test models are often used to verify your main model. You can create Simulink Test test
harnesses by importing your standalone test models. Importing standalone models enables
synchronization and management features, allowing you to:

• Iterate on your design, using model and test harness synchronization
• Manage test harnesses, using the UI and programmatic interfaces
• Clarify ownership of a test harness by a model, subsystem, or library being tested

A common test model passes input signals to a copy of a subsystem or a Model block referencing your
main model. Test models include models created by Simulink Coverage™ and Simulink Design
Verifier™.

Test Harness Import Workflow
Before importing a standalone model as a test harness, determine:

• In the main model, the model or component to associate the test harness with.
• The path to the standalone model.
• The tested component in the standalone model.

For example, this standalone model tests the Controller subsystem. The model passes Inputs
to Controller. Safety Properties verifies the Controller output.

Component Compatibility for Test Harness Import
When you import a model as a test harness, the component in the main model must be compatible
with the component in the standalone model.

2 Test Harness

2-46

Component Compatibility for Test Harness Import

In the main model, if the component is: In the standalone model, the tested
component must be:

A user-defined function block (e.g. an S-Function
block)

The same block type

The top-level model A Model block or a subsystem
A subsystem A subsystem, Model block, or a user-defined

function block
A Subsystem Reference block Subsystem model
A Model block A Model block or a subsystem

You cannot create a test harness by importing:

• Libraries
• Models that have existing test harnesses
• Models with unsaved changes. Save open models before importing

Import a Standalone Model as a Test Harness
This example shows how to import a standalone test model to create a test harness in Simulink Test.

The main model sltestBasicCruiseControl is a cruise control system, with root import and
output blocks.

The test model contains a Signal Builder block driving a copy of the Controller subsystem, with a
subsystem verifying that the throttle output goes to 0 if the brake is applied for three consecutive
time steps.

 Create Test Harnesses from Standalone Models

2-47

Create a Test Harness from the Standalone Model

1. In the main model, right-click the Controller subsystem and select Test Harness > Import for
'Controller'.

2. Set the following harness properties:

• Name: VerificationSubsystemHarness
• Simulink model to import: Click Browse and select

sltestBasicCruiseControlHarnessModel in the MATLAB® examples/simulinktest
directory.

• Component under Test in imported model: Controller

3. Click OK.

A test harness is created from the standalone model, owned by the Controller subsystem in the
main model. Click the badge to preview the test harness.

2 Test Harness

2-48

See Also
sltest.harness.import

Related Examples
• “Test Harness and Model Relationship” on page 2-2
• “Synchronize Changes Between Test Harness and Model” on page 2-50

 Create Test Harnesses from Standalone Models

2-49

Synchronize Changes Between Test Harness and Model
In this section...
“Set Synchronization for a New Test Harness” on page 2-50
“Change Synchronization of an Existing Test Harness” on page 2-53
“Synchronize Configuration Set and Model Workspace Data” on page 2-53
“Check for Unsynchronized Component Differences” on page 2-53
“Rebuild a Test Harness” on page 2-54
“Push Changes from Test Harness to Model” on page 2-54
“Check Component and Push Parameter to Main Model” on page 2-54

A test harness provides an isolated environment to test design changes. You can synchronize changes
from the test harness to the main model, or from the main model to the test harness. Synchronization
includes these model elements:

• The component under test
• Block parameters
• Optionally, the model or test harness configuration set
• Optionally, the model workspace parameters

You do not need to synchronize base workspace data because it is available to both test harness and
main model. Subsystem model test harnesses always sync with their underlying models.

Set Synchronization for a New Test Harness
When you create a test harness, you specify when changes in the test harness are synchronized with
the main model. Synchronization can occur automatically or manually. If you plan to try different
component designs in the test harness, use manual synchronization to avoid overwriting the
component in the main model. Depending on the type of component under test (CUT) in your harness,
you can select from different synchronization types. These options are available in the Create Test
Harness dialog box or by using the SynchronizationMode property of sltest.harness.create.

For all synchronization types, you can simulate the main model even if a test harness is open. You can
also create harnesses for model components other than the current component under test and its
nested subsystems. You cannot, however, have more than one harness open at time, so a newly
created harness does not open automatically.

The locking information in the table indicates whether you can change the model, harness, or CUT in
the model or harness when the test harness is open.

2 Test Harness

2-50

Synchronization Type Description Availability Model, CUT, and
Harness Locking
When Harness Is
Open

Synchronize on
harness open and
close

When the test harness
opens, the test harness
components and
parameters synchronize
from the model to the
test harness. When the
test harness closes, the
same elements
synchronize from the
harness to the model.

Available for:

• Subsystems,
including Stateflow
charts and MATLAB
Function blocks

• For Subsystem
Reference blocks,
only the block
parameters are
synchronized

• Model blocks
• S-function blocks

Not available for:

• Block diagrams
• SIL/PIL harnesses
• Subsystem model

harnesses

The main model and
harness are unlocked
for all types of CUTs.

Subsystem CUTs in the
model are locked.
Subsystem CUTs in the
harness are unlocked,

Synchronize on
harness open

When the harness
opens, the harness
components and
parameters synchronize
from the model to the
test harness.

Available for:

• Block diagrams
• Subsystems,

including Stateflow
charts and MATLAB
Function blocks

• For Subsystem
Reference blocks,
only the block
parameters are
synchronized

• Model reference
blocks

• S-function blocks

Not available for:

• SIL/PIL harnesses
• Subsystem model

harnesses

The main model and
harness are unlocked
for all types of CUTs.

Subsystem CUTs in the
model and the harness
are locked.

 Synchronize Changes Between Test Harness and Model

2-51

Synchronization Type Description Availability Model, CUT, and
Harness Locking
When Harness Is
Open

Synchronize only
during push and
rebuild

Synchronizes when you
click Push Changes or
Rebuild Harness. Push
synchronizes changes
from the test harness to
the model. Rebuild
synchronizes changes
from the model to the
test harness.

Available for:

• Subsystems,
including Stateflow
charts and MATLAB
Function blocks

• Model reference
blocks

• S-function blocks
• Subsystem models,

which always
synchronize on the
push and rebuild
only.

Not available for:

• Block diagrams
• SIL/PIL harnesses
• Components in

libraries

The main model,
harness, and all types of
CUTs in the model and
harness, including
subsystems, are
unlocked.

Synchronize only
during rebuild

Synchronizes only when
you click Rebuild
Harness. Changes
synchronize from the
model to the test
harness.

Available for:

• Block diagrams
• Model reference

blocks
• SIL/PIL verification

mode components

Not available for:

• Subsystems,
including Stateflow
charts and MATLAB
Function blocks

• S-function blocks
• Components in

libraries

The main model,
harness, and all types of
CUTs in the model are
unlocked. All types of
CUTs in the harness are
unlocked, except
SIL/PIL verification
mode components,
which are locked and
masked.

Note If you create a test harness in SIL or PIL mode for a Model block, the block mode in the test
harness is changed to SIL or PIL, respectively. This mode is not updated to the main model when you
close the test harness.

2 Test Harness

2-52

Maintain SIL or PIL Block Fidelity If you use a software-in-the-loop (SIL) or processor-in-the-loop
(PIL) block in the test harness, consider setting the test harness to rebuild every time it opens.
Regularly rebuilding the test harness keeps the generated code referenced by the SIL/PIL block as a
reflection of the main model.

Change Synchronization of an Existing Test Harness
To change a test harness synchronization mode:

1 Close the test harness.
2 In the main model, click the harness badge on the block or the Simulink canvas.
3 In the test harness thumbnail preview, click the Harness operations icon and select

Properties.
4 Change the Synchronization Mode in the properties dialog box.

If you use the command line, set the SynchronizationMode property with sltest.harness.set.

Synchronize Configuration Set and Model Workspace Data
To synchronize the configuration set and workspace parameters between the test harness and main
model, select Update Configuration Parameters and Model Workspace data on rebuild in the
harness creation or harness properties dialog box.

Check for Unsynchronized Component Differences
If your test harness does not synchronize changes, you can check for unsynchronized component
differences between the test harness and main model. Checking for unsynchronized differences can
be useful if:

• You are making tentative design changes in the test harness and want to check that the main
model component is not overwritten.

• You have made design changes to the main model and want to check which test harnesses must be
rebuilt.

From the test harness window, select Check Harness to check for differences. If the component
differs, you can push changes from the test harness to the main model, or rebuild the test harness
from the main model. Also see the sltest.harness.check function.

Consider these conditions when checking for unsynchronized differences:

• sltest.harness.check only includes the block diagram, block parameters, and mask
parameters in the comparison between the test harness and main model. Port options, compiled
attributes, hidden parameters, and Model block data logging parameters are not included in the
comparison.

• If the component contains a Simscape™ Solver Configuration block, the check result always shows
that the component differs between the test harness and main model. The Solver Configuration
block is affected by Simscape blocks outside the component, and therefore always differs between
the test harness and main model.

 Synchronize Changes Between Test Harness and Model

2-53

Rebuild a Test Harness
Rebuild a test harness to reflect the latest state of the main model. In the test harness, select
Rebuild Harness. In addition to updating the component under test and block parameters, this
operation rebuilds harness conversion subsystems. If the test harness does not have conversion
subsystems, rebuilding adds them.

Rebuilding can disconnect signal lines. For example, if signal names changed in the main model,
signal lines in the test harness can be disconnected. If lines are disconnected, reconnect signal lines
to the component under test or conversion subsystems. If you specified to use existing generated
code for a SIL/PIL subsystem using sltest.harness.create or sltest.harness.set, the
harness rebuild uses that code instead of regenerating it.

For more information, see “Create Test Harnesses and Select Properties” on page 2-12 and
sltest.harness.rebuild.

Push Changes from Test Harness to Model
After changing your system in the test harness, you can push changes to the main model. In the test
harness, select Push Changes. This process overwrites the component in the main model.

Check Component and Push Parameter to Main Model
This example shows a basic workflow of updating a parameter in a test harness, checking the
synchronization between the test harness and main model, and pushing the parameter change from
the test harness to the main model.

This example also includes programmatic steps.

Open the model sltestCar. The model includes a transmission shift controller algorithm and
simplified powertrain and vehicle dynamics.

open_system('sltestCar');

2 Test Harness

2-54

Update the Mask Parameter in the Test Harness

1. Open the test harness. Click the badge on the shift_logic chart and select the
ShiftLogic_InportHarness test harness. The test harness is set to synchronize only when you
push to or rebuild from the main model.

To open the test harness from the command line, use:

sltest.harness.open('sltestCar/shift_logic','ShiftLogic_InportHarness');

2. Double-click the shift_logic subsystem. For Delay before gear change (tick), enter 4. Click
OK.

To change the value from the command line, use:

shiftLogicMask = Simulink.Mask.get('ShiftLogic_InportHarness/shift_logic');
maskParamValue = shiftLogicMask.Parameters.Value;
shiftLogicMask.Parameters.Value = '4'; % Set to new parameter value

Check Synchronization between Test Harness and Main Model

On the command line, run the sltest.harness.check function.

 Synchronize Changes Between Test Harness and Model

2-55

[comparison,details] = sltest.harness.check('sltestCar/shift_logic',...
 'ShiftLogic_InportHarness');

The results show that the component under test is different in the test harness due to the updated
mask parameter.

comparison

comparison =

 logical

 0

details

details =

 struct with fields:

 overall: 0
 contents: 1
 reason: 'The contents of harnessed component and the contents of the component in the main model are same, but they differ in terms of block or mask parameters.'

Update the Parameter to the Main Model

1. In the test harness, on the Harness tab, click Push Changes.

2. In the main model, double-click the shift_logic subsystem. The parameter value is updated.

To push the change using the command line, use:

sltest.harness.push('sltestCar/shift_logic','ShiftLogic_InportHarness')

Re-check Synchronization between Test Harness and Main Model

On the command line, update the main model and test harness. Then, run the
sltest.harness.check function.

set_param('sltestCar','SimulationCommand','update');
set_param('ShiftLogic_InportHarness','SimulationCommand','update');

[comparison,details] = sltest.harness.check('sltestCar/shift_logic',...
 'ShiftLogic_InportHarness');

The results show that the component under test is the same between the test harness and the main
model.

comparison

comparison =

 logical

2 Test Harness

2-56

 1

details

details =

 struct with fields:

 overall: 1
 contents: 1
 reason: 'The checksum of the harnessed component and the component in the main model are same.'

close_system('sltestCar',0);

See Also
sltest.harness.check | sltest.harness.push | sltest.harness.rebuild

Related Examples
• “Test Harness and Model Relationship” on page 2-2
• “SIL Verification for a Subsystem” on page 5-2

 Synchronize Changes Between Test Harness and Model

2-57

Test Library Blocks
In this section...
“Library Testing Workflow” on page 2-58
“Library and Linked Subsystem Test Harnesses” on page 2-58
“Edit Library Block from a Test Harness” on page 2-59
“Testing a Library and a Linked Block” on page 2-59
“SIL Testing a Reusable Library Subsystem” on page 2-64

If your model includes instances of blocks from a library, you can test both the source block in the
library, and individual block instances in other models. You can also test software-in-the-loop (SIL)
code generated for a reusable library subsystem. First, create test harnesses for a library block to
test your design. Once the library block meets your requirements, create test harnesses for linked
blocks and test the subsystem instances. You can move test harnesses from the library to an instance
and an instance to the library.

Library Testing Workflow
This procedure outlines an example workflow for testing library subsystems and linked subsystems.

1 Create a test case and a test harness for the library subsystem.
2 Test the library subsystem. If it fails your requirements, revise the design and test again.
3 Lock the library when your tests pass.
4 In your model, create a linked subsystem and retain the library test harnesses.
5 Compare the output of the linked instance to that of the library block using an equivalence test

case.
6 Create additional test cases and test harnesses for the linked instance.
7 Promote a test harness from the linked subsystem to the library if you want to include the test

harness with future linked subsystems.

Library and Linked Subsystem Test Harnesses
A test harness for a library subsystem has specific properties:

• Libraries do not compile, so a test harness for a library subsystem does not use compiled
attributes such as data type or sample rate.

• A test harness for a library subsystem does not generate conversion subsystems for the block
inputs and outputs.

• A library subsystem test harness does not use push or rebuild operations, because libraries do not
use configuration parameters.

When you create a linked subsystem from a library subsystem, test harnesses copy to the linked
instance. If you do not need the test harnesses, you can delete them. For instructions on deleting all
test harnesses from a model, see “Manage Test Harnesses” on page 2-29.

When you create a test harness for a linked subsystem, the harness associates with the linked
subsystem, not the library subsystem. You can move a test harness from a linked subsystem to the

2 Test Harness

2-58

library subsystem. For example, this linked subsystem Controller has three test harnesses. To
move the Requirements_Tests1 test harness to the library:

1 Click the harness badge on the linked subsystem.
2 Click the Harness Operations icon.

3 Select Move to Library.
4 A dialog box informs you that moving the harness removes it from the linked subsystem.
5 After confirmation, the harness appears with the library subsystem.

Edit Library Block from a Test Harness
You can apply an iterative design and test workflow to libraries by testing a library block in a test
harness and updating the component under test. Changes to the component under test synchronize to
the library when you close the test harness.

If you have a library block whose design is complete, set your test harnesses to prevent changes to
the component under test. You can set this property when you create the test harness or after
harness creation. See “Create Test Harnesses and Select Properties” on page 2-12.

Testing a Library and a Linked Block
Verify a reusable subsystem in a library and in a larger system.

This example demonstrates a test case that confirms a library block meets a short set of
requirements. After testing the library block, you execute a baseline test of a linked block and
capture the baseline results. You then promote the baseline test harness to the library.

The library block controls a simple heat pump system by supplying on/off signals to a fan and
compressor, and specifying the heat pump mode (heating or cooling).

 Test Library Blocks

2-59

Open the Test File

Enter the following to store paths and file names for the example, and to open the test file. The test
file contains a test case for the library block and for the block instance in a closed-loop model.

testFile = 'sltestHeatpumpLibraryTests.mldatx';
library = 'sltestHeatpumpLibraryExample';
system = 'sltestHeatpumpLibraryLinkExample';
sltest.testmanager.load(testFile);
sltest.testmanager.view;

Expand the Library Block Test test suite, and highlight the Requirements Scenarios test case in
the test browser. Expand the Test Harness section of System Under Test, and click the arrow to
open the test harness for the library block.

open_system(library);
sltest.harness.open([library '/Controller'],'Requirements_Tests');

2 Test Harness

2-60

The Test Sequence block sets three scenarios for the controller:

• The controller at idle
• The controller activating the fan only
• The controller activating the heating and cooling system

The Test Assessment block in the test harness checks the signals for each scenario. Since the test
inputs and assessments are contained in the test harness, and no baseline data is being captured, the
test case is a simulation test.

Run the Requirements-Based Test

In the test manager, run the Requirements Scenarios test case. The verify statement results show
that the control_out signals pass.

 Test Library Blocks

2-61

Open the Linked Block Model

In the test manager, expand Instance Test. Highlight the Baseline Test test case. In the System
Under Test, click the arrow next to the Model field to open the model.

sltest.harness.close([library '/Controller'], 'Requirements_Tests');
open_system(system);
sim(system);

The controller is a linked block to the library. It is associated with a test harness Baseline Test that
compares simulation results of the instance against baseline data. In your workflow, successful
baseline testing for an instances of a library block can show that the linked block simulates correctly

2 Test Harness

2-62

in the containing model. The test harness supplies a sine wave temperature and captures the
controller output.

Run the Baseline Test and Observe Results

In the test manager, click Run to execute the test. The results show that the baseline test passes.

Move the Test Harness to the Library

If you develop a particularly useful test for a linked block, you can promote the test harness from a
linked block to the source library block. The test harness then copies to all future instances of the
library block.

Move the Baseline_controller_tests test harness to the library block:

1. In the sltestHeatpumpLibraryLinkExample model, click the harness badge and hover over the
Baseline_controller_tests test harness.

2. Click the harness operations icon

3. Select Move to Library. A dialog informs you that the operation deletes the test harness from the
instance and adds it to the library. Click Yes.

4. The test harness moves to the Controller library block.

 Test Library Blocks

2-63

close_system(library,0);
close_system(system,0);
clear(library,system,testFile);
sltest.testmanager.clear;
sltest.testmanager.clearResults;

SIL Testing a Reusable Library Subsystem
This example shows how to unit test a reusable component in a library. It tests software-in-the-loop
(SIL) code generated for a subsystem by using an equivalence test.

The reusable library subsystem must be at the top level of the library and must have function
interfaces to lock down the subsystem interface. For information on reusable subsystem libraries,
function interfaces, and workflow limitations, see “Library-Based Code Generation for Reusable
Library Subsystems” (Embedded Coder).

Set Up the Code Generation Environment

orig = Simulink.fileGenControl('get','CodeGenFolderStructure');
Simulink.fileGenControl('set','CodeGenFolderStructure',...
 Simulink.filegen.CodeGenFolderStructure.TargetEnvironmentSubfolder);

Open the Reusable Library

This library contains a subsystem block at the top level.

ReuseLibSubsysExample

2 Test Harness

2-64

Build the Library

Build the reusable library to generate code and create the function interfaces. After the code
generation completes, you can view the function interfaces by clicking the lower right corner the
library to open the Manage Function Interfaces dialog box.

slbuild('ReuseLibSubsysExample');

Starting build procedure for: Double
Generating code and artifacts to 'Target environment subfolder' folder structure
Generating code into build folder: C:\TEMP\Bdoc22a_1891349_13144\ibC86E06\30\tpe8c5144f\ex98874249\IntelWin64\Double
Invoking Target Language Compiler on Double.rtw
Using System Target File: B:\matlab\rtw\c\ert\ert.tlc
 ### Loading TLC function libraries
.......
Initial pass through model to cache user defined code
Caching model source code
...
Writing header file Subsystem_P4fRhx7G.c
Writing header file Double_types.h
Writing header file Double.h
.
Writing header file rtwtypes.h
Writing header file Subsystem_P4fRhx7G.h
Writing source file Double.c
Writing header file Double_private.h
Writing source file ert_main.c
.
TLC code generation complete.
Saving binary information cache.
Using toolchain: Microsoft Visual C++ 2019 v16.0 | nmake (64-bit Windows)
Creating 'C:\TEMP\Bdoc22a_1891349_13144\ibC86E06\30\tpe8c5144f\ex98874249\IntelWin64_shared\rtwshared.mk' ...
Using toolchain: Microsoft Visual C++ 2019 v16.0 | nmake (64-bit Windows)
Creating 'C:\TEMP\Bdoc22a_1891349_13144\ibC86E06\30\tpe8c5144f\ex98874249\IntelWin64\Double\Double.mk' ...
Successful completion of code generation for: Double

The following files will be copied from IntelWin64_shared to C:\TEMP\Bdoc22a_1891349_13144\ibC86E06\30\tpe8c5144f\ex98874249\IntelWin64\ReuseLibSubsysExample\R2022a:

 Subsystem_P4fRhx7G.c
 Subsystem_P4fRhx7G.h
 shared_file.dmr

Files copied from IntelWin64_shared to C:\TEMP\Bdoc22a_1891349_13144\ibC86E06\30\tpe8c5144f\ex98874249\IntelWin64\ReuseLibSubsysExample\R2022a.

 Test Library Blocks

2-65

Starting build procedure for: Single
Generating code and artifacts to 'Target environment subfolder' folder structure
Generating code into build folder: C:\TEMP\Bdoc22a_1891349_13144\ibC86E06\30\tpe8c5144f\ex98874249\IntelWin64\Single
Invoking Target Language Compiler on Single.rtw
Using System Target File: B:\matlab\rtw\c\ert\ert.tlc
 ### Loading TLC function libraries
.......
Initial pass through model to cache user defined code
Caching model source code
...
Writing header file Subsystem_gC8gDtKe.c
Writing header file Single_types.h
Writing header file Single.h
Writing header file Subsystem_gC8gDtKe.h
.
Writing source file Single.c
Writing header file Single_private.h
Writing source file ert_main.c
TLC code generation complete.
Saving binary information cache.
Using toolchain: Microsoft Visual C++ 2019 v16.0 | nmake (64-bit Windows)
Creating 'C:\TEMP\Bdoc22a_1891349_13144\ibC86E06\30\tpe8c5144f\ex98874249\IntelWin64_shared\rtwshared.mk' ...
Using toolchain: Microsoft Visual C++ 2019 v16.0 | nmake (64-bit Windows)
Creating 'C:\TEMP\Bdoc22a_1891349_13144\ibC86E06\30\tpe8c5144f\ex98874249\IntelWin64\Single\Single.mk' ...
Successful completion of code generation for: Single

The following files will be copied from IntelWin64_shared to C:\TEMP\Bdoc22a_1891349_13144\ibC86E06\30\tpe8c5144f\ex98874249\IntelWin64\ReuseLibSubsysExample\R2022a:

 Subsystem_gC8gDtKe.c
 Subsystem_gC8gDtKe.h
 shared_file.dmr

Files copied from IntelWin64_shared to C:\TEMP\Bdoc22a_1891349_13144\ibC86E06\30\tpe8c5144f\ex98874249\IntelWin64\ReuseLibSubsysExample\R2022a.

Select the Subsystem Component and Open the Test Manager

Click on the Subsystem in the library model to select it. Then, open the Test Manager.

sltestmgr

Open the Test File

1 In the Test Manager, click Open and select the ReuseLibSubsysTest.mldatx file.

Enable Coverage Collection

1 Select ReuseLibSubsysTest in the Test Browser pane.
2 Then, expand the Coverage Settings section in the main pane.
3 In Coverage to Collect, check Record coverage for system under test.
4 In Coverage Metrics, check that Decision, MCDC, and Condition are selected.

2 Test Harness

2-66

Open the Create Test for Model Component wizard

1 Click the arrow under New and select Test for Model Component to open the Create Test for
Model Component wizard.

2 On the first page of the wizard, click the Use currently selected model component icon next to
the Component field. Both the Component and Top Model fields fill in.

3 Click the refresh icon next to the Select function interface field and select Double from the
dropdown.

4 Click Next.

 Test Library Blocks

2-67

Select the Test Inputs

1 Select Use Design Verifier to generate test input scenarios.
2 Click Next.

Select How to Test the Component

1 Select Perform back-to-back testing.
2 Set Simulation1 to Normal mode.

2 Test Harness

2-68

3 Set Simulation2 to Software-in-the-Loop (SIL) mode.
4 Click Next.

Specify the Input Source, Data File Format, and Test File

1 Select Inports as the test harness input source.
2 Select MAT as the file format.
3 Select Add tests to currently selected test file.

 Test Library Blocks

2-69

Generate the Test Case and Return to the Test Manager

Click Done to generate the Double_harness1 test case for the Double function interface.

After test case generation completes, the Double_harness1 test case appears in the Test Manager.
Notice that the Simulation Mode for Simulation1 is set to Normal and Simulation2 is set to
Software-in-the-Loop (SIL) mode.

2 Test Harness

2-70

Run the Test

Click Run.

View Equivalence Results

Expand the Results to view the Equivalence Criteria Result. Notice that the Differences plot shows no
differences between the two signals, which indicates that the Normal and SIL simulations are
producing the same results. The SIL code associated with the reusable library subsystem can be
reused for other SIL tests.

 Test Library Blocks

2-71

View Coverage Results

Expand the Aggregated Coverage section to view the coverage results. The two coverage results that
show 100% are for the equivalence test run for the Double function interface. The other two results
show 0% or no coverage because the Single function interface was not tested.

2 Test Harness

2-72

Clean up

Simulink.fileGenControl('set','CodeGenFolderStructure',orig);

See Also

More About
• “Library-Based Code Generation for Reusable Library Subsystems” (Embedded Coder)
• “Generate Reusable Code from Library Subsystems Shared Across Models” (Embedded Coder)
• “Create Test Harnesses and Select Properties” on page 2-12
• “Import Test Cases for Equivalence Testing” on page 5-19
• “Generate Tests and Test Harnesses for a Component or Model” on page 6-26

 Test Library Blocks

2-73

Test Sequences and Assessments

• “Test Sequence Basics” on page 3-2
• “Use Stateflow Chart for Test Harness Inputs and Scheduling” on page 3-8
• “Assess Simulation and Compare Output Data” on page 3-14
• “Assess Model Simulation Using verify Statements” on page 3-18
• “Verify Multiple Conditions at a Time” on page 3-23
• “Assess a Model by Using When Decomposition” on page 3-25
• “Test Sequence Editor” on page 3-30
• “Transitions, Temporal Operators, and Messages in Test Sequence Blocks” on page 3-37
• “Generate Test Signals” on page 3-44
• “Using an External Function in a Test Sequence Block” on page 3-49
• “Programmatically Create a Test Sequence” on page 3-51
• “Programmatically Create and Run Test Sequence Scenarios” on page 3-55
• “Use Test Sequence Scenarios in the Test Sequence Editor and Test Manager” on page 3-58
• “Scenario Parameter Section” on page 3-66
• “Test Sequence and Assessment Syntax” on page 3-67
• “Debug a Test Sequence” on page 3-74
• “Test Downshift Points of a Transmission Controller” on page 3-77
• “Examine Model Verification Results by Using Simulation Data Inspector” on page 3-82
• “Fix Requirements-Based Testing Issues” on page 3-86
• “Assess Temporal Logic by Using Temporal Assessments” on page 3-92
• “Test Traffic Light Control by Using Logical and Temporal Assessments” on page 3-98
• “Logical and Temporal Assessment Syntax” on page 3-106

3

Test Sequence Basics
In this section...
“Test Sequence Hierarchy” on page 3-2
“Test Sequence Scenarios” on page 3-2
“Transition Types” on page 3-2
“Create a Basic Test Sequence” on page 3-4
“Create Basic Test Assessments” on page 3-5

A test sequence consists of test steps arranged in a hierarchy. You can use a test sequence to define
test inputs and to define how a test will progress in response to the simulation. A test step contains
actions that execute at the beginning of the step. A test step can contain transitions that define when
the step stops executing, and which test step executes next. Actions and transitions use MATLAB as
the action language. You create test sequences by using the Test Sequence block and the Test
Sequence Editor on page 3-30. See “Use Stateflow Chart for Test Harness Inputs and Scheduling”
on page 3-8.

Test Sequence Hierarchy
Test sequences defined in Test Sequence blocks can have parent steps and substeps. Substeps can
activate only if the parent step is active. A group of steps in the same hierarchy level shares a
common transition type. When you create a test step, the step becomes a transition option for other
steps in the same group.

Test Sequence Scenarios
In a Test Sequence block, you can define multiple test sequences, which are called test sequence
scenarios. By using scenarios, you can define distinct test sequences without having multiple Test
Sequence blocks in your test harness. You can run test sequence scenarios in these ways:

• Activate a single scenario from the Test Sequence Editor and run the model
• Activate a single scenario using API commands and run the model
• Control the active scenario with a workspace variable and run the model
• Use a custom test script to loop through scenarios when running the model
• Define iterations in the Test Manager to run more than one scenario in a single test case

For more information and examples of using test sequence scenarios, see “Use Test Sequence
Scenarios in the Test Sequence Editor and Test Manager” on page 3-58 and “Programmatically
Create and Run Test Sequence Scenarios” on page 3-55.

Transition Types
Test sequences defined in Test Sequence blocks transition from one step to another in two ways:

• Standard transition: You can define a sequence of actions that react to simulation conditions
using a standard transition sequence. Standard transition sequences start with the first step and
progress according to transition conditions and next steps. For a list of transitions, see “Test
Sequence and Assessment Syntax” on page 3-67.

3 Test Sequences and Assessments

3-2

This test sequence sets the value of Boolean outputs RedButtonIn and GreenButtonIn, with
transitions happening after each step has been active for 1 sec.

• When decomposition: When decomposition sequences are analogous to switch statements in
programming. Your sequence can act based on specific conditions occurring in your model. In a
When decomposition sequence, steps activate based on a condition that you define after the step
name. Transitions are not used between steps.

This When decomposition contains three verify statements. Each verify statement is active
when the signal gear is equal to a different value. For more information, see “Assess a Model by
Using When Decomposition” on page 3-25.

 Test Sequence Basics

3-3

Create a Basic Test Sequence
In this example, you use a Test Sequence block to create a simple test sequence for a transmission
shift logic controller.

1 Open the model. At the command line, enter

openExample('TransmissionDownshiftTestSequence')
2 Right-click the shift_controller subsystem and select Test Harness > Create for

‘shift_controller’.
3 In the Create Test Harness dialog box, under Sources and Sinks:

• Select Test Sequence from the source drop-down menu.
• Select Add separate assessment block.
• Select Open harness after creation.

4 Click OK. The test harness for the shift_controller subsystem opens.
5 Double-click the Test Sequence block. The Test Sequence Editor opens.

6 Create the test sequence.

a Rename the first step Accelerate and add the step actions:

speed = 10*ramp(et);
throttle = 100;

b Right-click the Accelerate step and select Add step after. Rename this step Stop, and
add the step actions:

throttle = 0;
speed = 0;

c Enter the transition condition for the Accelerate step. In this example, Accelerate
transitions to Stop when the system is in fourth gear for 2 seconds. In the Transition
column, enter:

duration(gear == 4) >= Limit

In the Next Step column, select Stop.
d Add a constant to define Limit. In the Symbols pane, hover over Constant and click the

add data button. Enter Limit for the constant name.
e Hover over Limit and click the edit button. In the Constant value field, enter 2. Click OK.

3 Test Sequences and Assessments

3-4

Create Basic Test Assessments
1 Continuing the example, in the test harness, double-click the Test Assessment block to open the

editor. The editor displays a When decomposition sequence.
2 Rename the first step Assessments.
3 Add two steps to Assessments. Right-click the Assessments step and select Add sub-step. Do

this a second time. There should be four steps under Assessments.
4 Enter the names and actions for the four substeps.

Check1st when gear == 1
verify(speed < 45)

Check2nd when gear == 2
verify(speed < 75)

Check3rd when gear == 3
verify(speed < 105)

Else

The fourth step Else has no actions. Else handles simulation conditions outside of the
preceding when conditions.

5 Add a scope to the harness and connect the speed, throttle, and gear signals to the scope.

 Test Sequence Basics

3-5

6 Set the model simulation time to 15 seconds and simulate the test harness. View the signal data
by opening the scope.

7 View the results of the verify statements in the Simulation Data Inspector.

3 Test Sequences and Assessments

3-6

See Also
Test Sequence

More About
• “Test Sequence Editor” on page 3-30
• “Test Sequence and Assessment Syntax” on page 3-67
• “Use Test Sequence Scenarios in the Test Sequence Editor and Test Manager” on page 3-58
• “Programmatically Create and Run Test Sequence Scenarios” on page 3-55
• “Assess a Model by Using When Decomposition” on page 3-25
• “Use Stateflow Chart for Test Harness Inputs and Scheduling” on page 3-8

 Test Sequence Basics

3-7

Use Stateflow Chart for Test Harness Inputs and Scheduling
In this section...
“Use a Stateflow Chart for Test Harness Scheduling” on page 3-8
“Use a Stateflow Chart as a Test Harness Source” on page 3-9
“Stateflow Chart as Test Harness Scheduler and Source” on page 3-10

Use a Stateflow Chart for Test Harness Scheduling
You can define test harness scheduling using a Test Sequence block, a MATLAB Function block, or a
Stateflow chart. If you use a Stateflow chart as a scheduler, you can use Stateflow features that are
not available with either the Test Sequence block or MATLAB Function block. You can define more
complicated scheduling by using Stateflow variants, graphical functions, super transitions, and super
steps. For example, with Stateflow variants, you can specify multiple test scenarios in a single test
harness. If you do not need to test multiple test scenarios or use complicated sequence logic, use the
Test Sequence block, which has simpler syntax for test scheduling.

Note You must have a Stateflow license to use a chart for test harness inputs or scheduling.

To use a Stateflow chart as a test harness test scheduler, the model or subsystem under test must
have at least one function call signal.

When setting up a test harness from a model, the steps for using a chart as the scheduler are:

1 In a model or subsystem, right-click and select Test Harness > Create for Model or Create for
<subsystem>, respectively.

• For a model, in the Create a Test Harness dialog box, set Add scheduler for function-calls
and rates to Chart.

• For a subsystem, in the Create a Test Harness dialog box, set Generate function call
signals to Chart.

A chart named Simulink Function scheduler is added to the test harness.

3 Test Sequences and Assessments

3-8

2 Open the Stateflow chart and define the test sequence using Stateflow states, transitions and
other objects. The Stateflow states serve the same purpose as the sequence steps in a Test
Sequence block. The transitions define the criteria for moving from one state to another.

To programmatically specify a Stateflow chart as a scheduler, set the SchedulerBlock property of
sltest.harness.create to Chart.

Use a Stateflow Chart as a Test Harness Source
When creating a test harness from a model, the steps for using a chart as the test harness source are:

1 In a model or subsystem, right-click and select Test Harness > Create for Model or Create for
<subsystem>, respectively.

2 In the Create Test Harness dialog box, in the Sources and Sinks section, select Chart instead
of Inport.

A chart is added to the test harness. For example,

3 Open the Stateflow chart and define the test harness sources using Stateflow logic.

To programmatically specify a Stateflow chart as a source, set the Source property of
sltest.harness.create to Chart.

 Use Stateflow Chart for Test Harness Inputs and Scheduling

3-9

Stateflow Chart as Test Harness Scheduler and Source
This example shows how to use a single Stateflow chart as both a test scheduler and source in a test
harness. The test harness for the sltest_autosar_chart.slx model in this example has already
been created.

sltest_autosar_chart is an AUTOSAR composition model of a throttle position controller for an
automobile. AUTOSAR composition models contain a network of interconnected Model blocks, each
of which represents an atomic AUTOSAR software component (ASWC). The Simulink inports and
outports represent AUTOSAR ports. The signal lines represent AUTOSAR component connectors.

The inputs that capture the primary and secondary throttle position are modeled using an external
time series input and are directly fed through the Chart without modification. This modeling style is
useful when some stimulus inputs can be modeled and others are only available as externally
captured data.

Navigate to a directory with write permissions before running this example.

Open the Model

open_system('sltest_autosar_chart')

Open the Test Harness

The test harness has already been created for this example.

This image shows the portion of the Create Test Harness dialog where Chart was selected as both
the source and scheduler. You do not need to recreate the test harness.

3 Test Sequences and Assessments

3-10

To open the harness, use the perspective control in the lower-right corner of the editor canvas and
click Internal Test Harness.

The test harness opens.

 Use Stateflow Chart for Test Harness Inputs and Scheduling

3-11

Open the Stateflow Chart

Double-click the chart in the test harness to view the scheduling logic.

The component under test (the AUTOSAR model) requires the accelerator pedal position sensor input
APP_HwIO_Value, which is modeled in the chart by three states.

The Initialize state sets the input to a nominal value (170) and the Run state models a steady
acceleration command for 950 ms. The acceleration command is reset to the nominal value in the
Terminate state.

The component under test uses the export-function modeling style. (See “Export-Function Models
Overview”.) When the test harness was created, its Stateflow chart was configured to call each root-
level Simulink Function block and send a trigger event to each function-call subsystem in the model.
In this example, the code to send the trigger events is in each state after the stimulus waveforms
have been generated.

Run the Model

Run the model from the test harness. To see the throttle command output, open the Scope in the test
harness.

3 Test Sequences and Assessments

3-12

See Also
sltest.harness.create | Test Sequence | Function Caller

More About
• “Chart Programming” (Stateflow)
• “Transitions, Temporal Operators, and Messages in Test Sequence Blocks” on page 3-37
• “Create Test Harnesses and Select Properties” on page 2-12
• “Test Sequence Basics” on page 3-2
• “Test Sequence Editor” on page 3-30

 Use Stateflow Chart for Test Harness Inputs and Scheduling

3-13

Assess Simulation and Compare Output Data
In this section...
“Overview” on page 3-14
“Compare Simulation Data to Baseline Data or Another Simulation” on page 3-14
“Post-Process Results With a Custom Script” on page 3-15
“Run-Time Assessments” on page 3-15
“Logical and Temporal Assessments” on page 3-17

Overview
Functional testing requires assessing simulation behavior and comparing simulation output to
expected output. For example, you can:

• Analyze signal behavior in a time interval after an event.
• Compare two variables during simulation.
• Compare timeseries data to a baseline.
• Find peaks in timeseries data, and compare the peaks to a pattern.

This topic provides an overview to help you author assessments for your particular application. In the
topic, you can find links to more detailed examples of each assessment.

You can include assessments in a test case, a model, or a test harness.

• In a test case, you can:

• Compare simulation output to baseline data.
• Compare the output of two simulations.
• Post-process simulation output using a custom script.
• Assess temporal properties using logical and temporal assessments. If you have one or more
defined assessments and their associated symbols in a test case, you can use the API to obtain
a list and information about them, copy them to another test case, and remove them from a test
case. For information, see sltest.testmanager.Assessment,
sltest.testmanager.AssessmentSymbol, and sltest.testmanager.TestCase.

• In a test harness or model, you can:

• Verify logical conditions in run-time using a verify statement, which returns a pass, fail, or
untested result for each time step.

• Use assert statements to stop simulation on a failure.

• Use blocks from the Model Verification or Simulink Design Verifier library.

Compare Simulation Data to Baseline Data or Another Simulation
Baseline criteria are tolerances for simulation data compared to baseline data. Equivalence criteria
are tolerances for two sets of simulation data, each from a different simulation. You can set tolerances
for numeric, enumerated, or logical data.

3 Test Sequences and Assessments

3-14

Set a numeric tolerance using absolute or relative tolerances. Set time tolerances using leading and
lagging tolerances. For numeric data, you can specify absolute tolerance, relative tolerance, leading
tolerance, or lagging tolerance. For enumerated or logical data, you can specify leading or lagging
tolerance. Results outside the tolerances fail. For more information, see “Set Signal Tolerances” on
page 6-142.

Specify the baseline data and tolerances in the Test Manager Baseline Criteria or Equivalence
Criteria section. Results appear in the Results and Artifacts pane. The comparison plot displays
the data and differences.

This graphic shows an example of baseline criteria. The baseline criteria sets a relative tolerance for
signals output torque and vehicle speed.

Post-Process Results With a Custom Script
You can analyze simulation data using specialized functions by using a custom criteria script. For
example, you could find peaks in timeseries data using Curve Fitting Toolbox™ functions. A custom
criteria script is MATLAB code that runs after the simulation. Custom criteria scripts use the
MATLAB Unit Test framework.

Write a custom criteria script in the Test Manager Custom Criteria section of the test case. Custom
criteria results appear in the Results and Artifacts pane. Results are shown for individual MATLAB
Unit Test qualifications. For more information, see “Process Test Results with Custom Scripts” on
page 6-165.

This simple test case custom criteria verifies that the value of slope is greater than 0.

% A simple custom criteria
test.verifyGreaterThan(slope,0,'slope must be greater than 0')

Run-Time Assessments
verify Statements

For general run-time assessments, use verify statements. A verify statement evaluates a logical
expression and returns a pass, fail, or untested result for each simulation time step. verify
statements can include temporal and conditional syntax. A failure does not stop simulation.

Enter verify statements in a Test Assessment or Test Sequence block, using the Test Sequence
Editor. You can use verify statements with or without a test case in the Test Manager. Without a test
case, results appear in the Simulation Data Inspector. With a test case, results appear in the Test
Manager.

For information on using verify statements in your model, see “Assess Model Simulation Using
verify Statements” on page 3-18.

 Assess Simulation and Compare Output Data

3-15

assert Statements

You can use assert statements in a Test Assessment or Test Sequence block to stop executing an
invalid test. assert evaluates a logical argument, but unlike verify, assert stops simulation.
Failures appear as simulation errors. To make results easier to interpret, add an optional message.

For example, if a component under test outputs two signals h and k, and the test requires h and k to
initialize to 0, use assert to stop the test if the signals do not initialize. This assert statement
returns a message 'Signals must initialize to 0' if the logical condition h == 0 && k ==
0 fails.

Assessments for Real-Time Testing

If you are using a real-time test case, or if you want to reuse a desktop simulation test case on a real-
time target, use verify statements. verify statements are built into the real-time application, and
run on the real-time target. See “Assess Model Simulation Using verify Statements” on page 3-18.

Model Verification Blocks

Use blocks from the Simulink “Model Verification” library or the Simulink Design Verifier library to
assess signals in your model or test harness. pass, fail, or untested results from each block
appear in the Test Manager. For more information, see “Examine Model Verification Results by Using
Simulation Data Inspector” on page 3-82.

Note All Model Verification library blocks, including the Assertion block, do not produce verification
results when used in For Each subsystems. Use a Test Sequence block with verify statements
instead.

Examples of Run-Time Assessments

This example test harness includes:

• A verify statement in the Test Assessment block, verifying that signalC >= 5.
• An Assertion block verifying that throttle >= 0.

3 Test Sequences and Assessments

3-16

Logical and Temporal Assessments
Logical and temporal assessments evaluate temporal properties such as model timing and event
ordering over logged data. Use temporal assessments for additional system verification after the
simulation is complete. Temporal assessments are associated with test cases in the Test Manager.
Author temporal assessments by using the Logical and Temporal Assessments Editor. See “Assess
Temporal Logic by Using Temporal Assessments” on page 3-92 for more information.

Temporal assessment evaluation results appear in the Results and Artifacts pane. Use the
Expression Tree to investigate results in detail. If you have a Requirements Toolbox license, you can
establish traceability between requirements and temporal assessments by creating requirement links.
See “Link to Requirements” on page 1-2 for more information.

See Also

Related Examples
• “Compare Model Output to Baseline Data” on page 6-7
• “Test Two Simulations for Equivalence” on page 6-37

 Assess Simulation and Compare Output Data

3-17

Assess Model Simulation Using verify Statements
You can verify model simulation by including a Test Assessment block in your model or test harness,
and authoring verify statements in the Test Assessment block. verify statements return pass,
fail, or untested results for both the overall simulation and individual time steps. Results appear
in the Test Manager.

Activate verify Statements in the Test Assessment Block
The Test Assessment contains a When decomposition sequence. The When decomposition sequence
helps you clearly define the simulation condition that activates each verify statement:

1 If your model uses a Test Sequence block source, consider activating each verify statement
using the active Test Sequence block step.

2 If your model does not use a Test Sequence block source, or your test sequence steps do not
correspond with conditions to verify, activate each verify statement using a signal condition.

Activate verify Statements with Test Sequence Steps

Connect the Test Sequence and Test Assessment block with the active step signal from the Test
Sequence block. Activate each verify statement with the active step.

For example, this test harness contains a Test Sequence and Test Assessment block. The blocks are
connected by the Active_Step signal.

The Test Assessment block contains a when decomposition sequence with four substeps. Each
contains a verify statement and is activated with a different Test Sequence block step.

The Else step in this example has no actions and handles simulation conditions that do not match
any of the preceding when conditions. The name of such a step can be Else or any other desired
name. This step cannot contain a when condition.

3 Test Sequences and Assessments

3-18

To activate verify statements in a Test Assessment with active steps in a Test Sequence block:

1 Create active step data output for the Test Sequence block.

a Select the Test Sequence block.

Create a new enumerated data output. In the Property Inspector, select Create data to
monitor the active step and set the Data Type to Enum.

b Enter a name in Enum name.

2 Create a data input for the Test Assessment block:

a Open the Test Assessment block.
b

In the Symbols pane, hover next to Input, then click Add data .
c Name the input.

3 In the block diagram, connect the Test Sequence block output to the Test Assessment block
input.

4 Create a When decomposition sequence in the Test Assessment block.

a The Test Assessment block is configured by default with a When decomposition sequence. To
change between a standard sequence and a When decomposition sequence, right-click the
parent step and select When decomposition.

 Assess Model Simulation Using verify Statements

3-19

b For each When decomposition step, define when the step is active by using the active step
enumeration data. For example:

VerifyBoth when TSActiveStepIN == ...
 Test_Sequence_Active_Step_Enum.PressBothButtons

c Add verify statements to each assessment step.

Activate verify Statements with Signal Conditions

If your model does not use a Test Sequence block source, or if Test Sequence steps do not correspond
with conditions to verify, use unique signal conditions to activate verify statements. Place verify
statements in a When decomposition sequence, and use conditional statements in the When
conditions.

For example, this test harness uses a Signal Editor block input.

The Test Assessment block contains a When decomposition sequence. Each substep contains a
verify statement. A unique signal condition activates each substep.

3 Test Sequences and Assessments

3-20

Author verify Statements
verify statements evaluate logical expressions. You can label results in the Test Manager with
optional arguments.

A verify statement returns a pass, fail, or untested result for each time step and for the overall
simulation. A fail at any time step results in an overall fail. If there are no failing results, a pass
at any time step results in an overall pass. Otherwise, the overall result is untested. Results appear
in the Verify Statements section of the test results. For details on verify syntax and considerations
for using it, see the verify reference page.

Example

In this comparison of two values, the parent step uses verify statements to assess two local
variables x and y during the simulation.

• verify(x >= y) passes overall because it is true for the entire test sequence.
• verify(x == y) and verify(x ~= y) fail because they fail in step_1_2 and step_1_1,

respectively.

The Test Manager displays the results:

 Assess Model Simulation Using verify Statements

3-21

See Also
“Test Sequence Editor” on page 3-30 | Test Sequence | Test Assessment | verify |
sltest.testmanager.Assessment | sltest.testmanager.AssessmentSymbol |
sltest.testmanager.TestCase

Related Examples
• “Verify Multiple Conditions at a Time” on page 3-23
• “Requirements-Based Testing for Model Development” on page 1-7

3 Test Sequences and Assessments

3-22

Verify Multiple Conditions at a Time
To verify multiple conditions in a single time step, include verify statements inside if statements,
and include multiple if statements in a single test step.

For example, suppose you have a simple two-button utility function that operates as exclusive-or
logic. More than one of the following conditions can be valid at the same time step.

Parallel Input Conditions and Expected Outputs

Condition Expected Output
RedButtonIN == false && GreenButtonIN
== false

RedButtonOUT == false &&
GreenButtonOUT == false

GreenButtonIN == false GreenButtonOUT ~= true
RedButtonIN == false RedButtonOUT ~= true
RedButtonIN == true && GreenButtonIN
== true

RedButtonOUT == false &&
GreenButtonOUT == false

RedButtonIN == true && GreenButtonIN
== false

RedButtonOUT == true && GreenButtonOUT
== false

RedButtonIN == false && GreenButtonIN
== true

RedButtonOUT == false &&
GreenButtonOUT == true

To assess these conditions, this Test Assessment block includes six verify statements in the first test
step, contained in if statements. The test step is active during simulation, and the if statements are
evaluated at each time step.

 Verify Multiple Conditions at a Time

3-23

See Also
Test Assessment

3 Test Sequences and Assessments

3-24

Assess a Model by Using When Decomposition
This example shows how to use When decomposition in a Test Sequence block to author assessments
in a test harness.

This model implements a simple signal tracker that operates in three modes: 0 (Off), 1 (Slow), and 2
(Quick).

To observe the output and error of the signal tracker, simulate the model.

 Assess a Model by Using When Decomposition

3-25

Open the Test Harness

The SimpleTracker subsystem has a test harness that contains a Test Assessment block.

3 Test Sequences and Assessments

3-26

The Test Assessment block assesses the behavior of the SimpleTracker subsystem by using a When
decomposition test sequence.

The test sequence determines the appropriate verify() statements to run based on the value of mode.
The CheckError step has a When decomposition with three substeps:

 Assess a Model by Using When Decomposition

3-27

• OffMode is active when the value of mode is 0 (Off).
• SlowMode is active when the value of mode is 1 (Slow).
• QuickMode is active for all other values of mode.

Run the Model Assessments

To run the assessments, simulate the test harness. Open the Simulation Data Inspector to inspect the
result of the assessments.

3 Test Sequences and Assessments

3-28

Close the test harness and main model.

See Also
Test Assessment | Test Sequence | sltest.testmanager.Assessment |
sltest.testmanager.AssessmentSymbol | sltest.testmanager.TestCase

Related Examples
• “Test Sequence Basics” on page 3-2
• “Test Sequence and Assessment Syntax” on page 3-67

 Assess a Model by Using When Decomposition

3-29

Test Sequence Editor
The Test Sequence Editor enables you to define and modify test sequences for Test Sequence and Test
Assessment blocks. To open the Test Sequence Editor, double-click a Test Sequence or Test
Assessment block.

Define Test Sequences
A test sequence consists of test steps arranged in a hierarchy. Test steps can contain transitions that
define how a test progresses in response to the simulation. Test steps can also have a When
decomposition that uses logic similar to an if-elseif-else statement. By default:

• New Test Sequence blocks contain two standard transition test steps.
• New Test Assessment blocks contain a When decomposition test step with two sub-steps.

For more information, see “Transition Types” on page 3-2.

To define a test sequence:

1 Add test steps, as described in “Manage Test Steps” on page 3-30.
2 In the Step cell, define outputs and assessments.
3 To add a transition from a test step:

a Point to the Transition cell and click Add transition.
b In the Transition cell, define the conditions for exiting the step.
c In the Next Step cell, select the next test step from the drop-down list.

4 To define a step with a When decomposition:

a Right-click a test step and select When decomposition. The step displays the icon .
b Add sub-steps, as described in “Manage Test Steps” on page 3-30.
c In the Step cell of each sub-step, enter the when operator, followed by a condition. Do not

add a condition to the last sub-step.

Test Sequence Scenarios

To define multiple test sequences in a single Test Sequence block, use scenarios. In the left pane of
the Test Sequence Editor, click Scenarios, then click Use Scenarios. The existing test steps and
transitions are moved into a scenario tab named Scenario_1. Add more scenarios to define more test
sequences. For more information on Test Sequence scenarios, see “Use Test Sequence Scenarios in
the Test Sequence Editor and Test Manager” on page 3-58.

Manage Test Steps
In the Test Sequence Editor, you can add and delete test steps to your test sequence. You can also
reorder the test steps and change their position in the hierarchy.

Add and Delete Test Steps

To add a test step, right-click an existing step and select Add step before or Add step after.

To add a test step in a lower hierarchy level, right-click the parent step and select Add sub-step.

3 Test Sequences and Assessments

3-30

To delete a test step, right-click the step and select Delete step. If the test sequence contains only
one test step, you cannot delete it. You can delete its contents by selecting Erase last step content.

Copy and Paste Test Steps

To copy a test step, right-click the area to the left of the step name and select Copy step.
Alternatively, select the test step and use the shortcut Ctrl+C.

To cut a test step, right-click the area to the left of the step name and select Cut step. Alternatively,
select the test step and use the shortcut Ctrl+X.

To paste a test step, right-click the area to the left of a step name and select Paste step, then:

• Paste before step
• Paste after step
• Paste sub-step

Alternatively, select the test step and use the shortcut Ctrl+V.

Reorder Test Steps and Transitions

To reorder the test steps in a test sequence:

1 Point to a test step. The icon appears to the left of the step name.
2 Click and drag the icon to reorder the test step.

You can reorder test steps within the same hierarchy level. When you move a test step, sub-steps
move with the test step.

To reorder step transitions within the same test step, click and drag a transition number to reorder
the transition. The corresponding next step moves with the transition.

Change Test Step Hierarchy

To move a test step to a lower level in the hierarchy, right-click the step and select Indent step. You
can only indent a test step when the preceding step is at the same hierarchy level. You cannot indent
the first test step in a sequence or the first step in a hierarchy group.

To move a test step to a higher level in the hierarchy, right-click the step and select Outdent step.
You can only move the last step in a hierarchy group to a higher level in the hierarchy.

 Test Sequence Editor

3-31

Manage Input, Output, and Data Objects
In the Symbols sidebar of the Test Sequence Editor, you add, edit, or delete symbols in the Test
Sequence block. You can access these symbols from test steps at any hierarchy level. To show or hide

the Symbols sidebar, click the Symbols Sidebar button on the Test Sequence Editor toolbar.

To add a data symbol, point to the node for a symbol type and click an add symbol button. Available
options and additional setup steps depend on the symbol type.

Symbol Type Description Procedure for Adding Symbol
Input Options for input entries

include:

• Data
• Messages

1 In the Symbols sidebar, point to the Input
node and click either:

• Add data
• Add message

2 Enter the name of the input and press Enter.
Output Options for output entries

include:

• Data
• Messages
• Function Calls
• Triggers

1 In the Symbols sidebar, point to the Output
node and click:

• Add data
• Add message
• Add function call
• Add trigger

2 Enter the name of the output and press
Enter.

3 Test Sequences and Assessments

3-32

Symbol Type Description Procedure for Adding Symbol
Local Local data entries are available

only inside the Test Sequence
block in which they are defined.

1 In the Symbols sidebar, point to the Local
node and click Add data.

2 Enter the name of the local variable and
press Enter. Initialize the local variable in
the first test step.

Constant Constants are read-only data
entries available only inside the
Test Sequence block in which
they are defined.

1 In the Symbols sidebar, point to the
Constant node and click Add data.

2 Enter the name of the constant and press
Enter.

3 Point to the name of the constant and click
 Edit.

4 In the dialog box, in the Constant Value
field, enter the value of the constant.

Parameter Parameters are available inside
and outside the Test Sequence
block.

1 Using the Model Explorer, add a parameter
in the workspace of the model that contains
the Test Sequence block.

2 In the Symbols sidebar, point to the
Parameter node and click Add data.

3 Enter the name of the parameter and press
Enter.

Data Store
Memory

Data Store Memory entries are
available inside and outside the
Test Sequence block.

1 Using the Model Explorer, add a
Simulink.Signal object in the workspace
of the model that contains the Test Sequence
block. Alternatively, add a Data Store
Memory block to the model.

2 In the Symbols sidebar, point to the Data
Store Memory node and click Add data.

3 Enter the name of the data store and press
Enter.

To edit a data symbol, point to the name of the symbol and click Edit.

To delete a data symbol, point to the name of the symbol and click Delete.

Find and Replace
You can find and replace text in Test Sequence actions, transitions, and descriptions by using the
Find & Replace tool in the Test Sequence Editor.

1
To open the Find & Replace tool, click the icon in the toolbar.

2 In the Find what field, enter the text you want to locate.

 Test Sequence Editor

3-33

3 In the Replace with field, enter the updated text.
4 To locate the text, click Find Next or Find Previous.
5 To replace the old text with the updated text, click Replace.

When running a search, the Find & Replace tool searches descriptions only if the description
column is open.

Automatic Syntax Correction
The Test Sequence Editor changes the syntax automatically for:

• Increment and decrement operations, such as a++ and a--. For example, a++ is changed to
a=a+1.

• Assignment operations, such as a+=expr, a–=expr, a*=expr, and a/=expr. For example, a
+=b is changed to a=a+b.

• Evaluation operations, such as a!=expr and !a. For example, a!=b is changed to a~=b.
• Explicit casts for literal constant assignments. For example, if y is defined as type single,

then y=1 is changed to y=single(1).

Output and View Active Step Data
When you run a test, the current step in the test sequence is the active step. When you enable
creating active step data, a new output port is added to the Test Sequence block for the active step
signal. You can analyze the active step data or use the output signal as an input to other blocks in
your test harness. For example, a Test Assessment block can use the active step input as a trigger
signal. You can also plot the active step data in the Simulation Data Inspector to see how the active
step changes over time.

Enable Active Step Output

To create the active step data:

1 From the Test Sequence Editor, open the Model Explorer. Alternatively, open the Property
Inspector from the test harness or model that contains the Test Sequence or Test Assessment
block.

2 Enable Create data to monitor the active step.

3 Set Data Type to String or Enum. The default value is String.

• String — Output the active step data as a string. Use this option if you use duplicate step
names across scenarios or if you use duplicate substep names in different steps of the same
scenario. When you select String, the output includes the step name and indicates which
scenario is active. The step name string is <scenario>.<step>.<substep>. If the block
does not have an active step at a time step, the output is an empty string. This situation might
occur if a step uses an enabled subsystem and that subsystem is not enabled during that time
step.

3 Test Sequences and Assessments

3-34

• Enum — Output the active step as an enumerated value. Selecting Enum enables the Enum
name parameter. The data is output in the format <Enum name>.<step name>. The
scenario of that step is not included in the active step name. You cannot use Enum for the
active step output if you have duplicate step or substep names in your test sequence.

4 Click Apply.

View Active Step Data

You can view the active step output data in the Simulation Data Inspector, or if you run your test in
the Test Manager, in the Test Manager Results pane. Before running the test, in the harness, right-
click the active data output signal of the Test Sequence block and click Log Selected Signal. If you
want to plot the active step output, you do not need to connect the active step output signal to any
component.

After running a test, open the Simulation Data Inspector or the Test Manager Results. The format of
the active step plot differs depending on whether the output is an enumerated or string type.

• Enumerated type — The x-axis is time and the y-axis is the step.

• String type — The x-axis is time. Steps appear as blocks of time during the period they are active.
If there is not enough space to show the full string names, the Simulation Data Inspector
truncates the beginning of the names so the step name displays.

 Test Sequence Editor

3-35

If there are too many step blocks to display in the plot, only the steps that fit are shown.

You can add the active step data plot to a Test Results report in the same way you include other test
results.

Use Active Step Output as Input to Another Block

To use the active step output signal as input to another block, such as a Test Assessment block,
connect the signal to the input port of the block. You can then use the signal to trigger actions and
assessments based on the active step.

See Also
Test Assessment | Test Sequence

Related Examples
• “Test Sequence Basics” on page 3-2
• “Use Test Sequence Scenarios in the Test Sequence Editor and Test Manager” on page 3-58
• “Test Sequence and Assessment Syntax” on page 3-67
• “Use Stateflow Chart for Test Harness Inputs and Scheduling” on page 3-8

3 Test Sequences and Assessments

3-36

Transitions, Temporal Operators, and Messages in Test
Sequence Blocks

In this section...
“Transition Between Steps Using Temporal or Signal Conditions” on page 3-37
“Temporal Operators” on page 3-37
“Transition Operators” on page 3-38
“Use Messages in Test Sequences” on page 3-39

Transition Between Steps Using Temporal or Signal Conditions
The Test Sequence block uses MATLAB as the action language. You can transition between test steps
by evaluating the component under test. You can use conditional logic, temporal operators, and event
operators.

Consider a simple test sequence that outputs a sine wave at three frequencies. The Test Sequence
block steps through several actions based on changes in the signal switch. See hasChanged.

Temporal Operators
To create an expression that evaluates the simulation time, use temporal operators. Variables used in
signal conditions must be inputs, parameters, or constants in the Test Sequence block.

Operator Syntax Description Example
et et(TimeUnits) The elapsed time of the

test step in TimeUnits.
Omitting TimeUnits
returns the value in
seconds.

The elapsed time of the test sequence
step in milliseconds:

et(msec)

 Transitions, Temporal Operators, and Messages in Test Sequence Blocks

3-37

Operator Syntax Description Example
t t(TimeUnits) The elapsed time of the

simulation in TimeUnits.
Omitting TimeUnits
returns the value in
seconds.

The elapsed time of the simulation in
microseconds:

t(usec)

after after(n,
TimeUnits)

Returns true if n specified
units of time in TimeUnits
elapse since the beginning
of the current test step.

After 4 seconds:

after(4,sec)

before before(n,
TimeUnits)

Returns true until n
specified units of time in
TimeUnits elapse,
beginning with the current
test step.

Before 4 seconds:

before(4,sec)

duration ElapsedTime =
duration
(Condition,
TimeUnits)

Returns ElapsedTime in
TimeUnits for which
Condition has been
true. ElapsedTime is
reset when the test step is
re-entered or when
Condition is no longer
true.

Return true if the time in
milliseconds since Phi > 1 is
greater than 550:

duration(Phi>1,msec) > 550

Syntax in the table uses these arguments:

TimeUnits

The units of time

Value: sec|msec|usec

Examples:

msec

Condition

Logical expression triggering the operator. Variables used in duration can be inputs, parameters, or
constants, with at most one local or output data.

Examples:

u > 0
x <= 1.56

Transition Operators
To create expressions that evaluate signal events, use transition operators. Common transition
operators include:

3 Test Sequences and Assessments

3-38

Operator Syntax Description Example
hasChanged hasChanged(u) Returns true if u

changes in value since
the beginning of the
test step, otherwise
returns false.

u must be an input data
symbol.

Transition when h
changes:

hasChanged(h)

hasChangedFrom hasChangedFrom(u,A) Returns true if u
changes from the value
A, otherwise returns
false.

u must be an input data
symbol.

Transition when h
changes from 1:

hasChangedFrom(h,1)

hasChangedTo hasChangedTo(u,B) Returns true if u
changes to the value B,
otherwise returns false.

u must be an input data
symbol.

Transition when h
changes to 0:

hasChangedTo(h,0)

Use Messages in Test Sequences
Messages carry data between Test Sequence blocks and other blocks such as Stateflow® charts.
Messages can be used to model asynchronous events. A message is queued until you evaluate it,
which removes it from the queue. You can use messages and message data inside a test sequence.
The message remains valid until you forward it, or the time step ends. For more information, see
“Messages” (Stateflow) in the Stateflow® documentation.

Receive Messages and Access Message Data

If your Test Sequence block has a message input, you can use queued messages in test sequence
actions or transitions. Use the receive command before accessing message data or forwarding a
message.

To create a message input, hover over Input in the Symbols sidebar, click the add message icon, and
enter the message name.

receive(M) determines whether a message is present in the input queue M, and removes the
message from the queue. receive(M) returns true if a message is in the queue, and false if not.
Once the message is received, you can access the message data using the dot notation, M.data, or
forward the message. The message is valid until it is forwarded or the current time step ends.

The order of message removal depends on the queue type. Set the queue type using the message
properties dialog box. In the Symbols sidebar, click the edit icon next to the message input, and
select the Queue type.

 Transitions, Temporal Operators, and Messages in Test Sequence Blocks

3-39

Send Messages

To send a message, create a message output and use the send command. To create a message
output, hover over Output in the Symbols sidebar, click the add message icon, and enter the
message name.

You can assign data to the message using the dot notation M.data, where M is the message output of
the Test Sequence block. send(M) sends the message.

Forward Messages

You can forward a message from an input message queue to an output port. To forward a message:

1 Receive the message from the input queue using receive.
2 Forward the message using the command forward(M,M_out) where M is the message input

queue and M_out is the message output.

Compare Test Sequences Using Data and Messages

This example demonstrates message inputs and outputs, sending, and receiving a message. The
model compares two pairs of test sequences. Each pair is comprised of a sending and receiving test
sequence block. The first pair sends and receives data, and the second sends and receives a message.

Set the model name variable.

model = 'sltest_testsequence_data_vs_message';

Open the model.

open_system(model)

3 Test Sequences and Assessments

3-40

Test Sequences Using Data

The DataSender block assigns a value to a data output M.

The DataReceiver block waits 3 seconds, then transitions to step S2. Step S2 transitions to step S3
using a condition comparing M to the expected value, and does the same for S3 to S4.

Test Sequences Using Messages

The MessageSender block assigns a value to the message data of a message output M_out, then
sends the message to the MessageReceiver block.

The MessageReceiver block waits 3 seconds, then transitions to step S2. Step S2's transition
evaluates the queue M with receive(M), removing the message from the queue. receive(M)

 Transitions, Temporal Operators, and Messages in Test Sequence Blocks

3-41

returns true since the message is present. M.data == 3.5 compares the message data to the
expected value. The statement is true, and the sequence transitions to step S3.

When step S3's transition condition evaluates, no messages are present in the queue. Therefore, S3
does not transition to S4.

Run the test and observe the output comparing the different behaviors of the test sequence pairs.

open_system([model '/Scope'])
sim(model)

3 Test Sequences and Assessments

3-42

close_system(model,0)
clear(model)

See Also
Test Sequence | “Test Sequence and Assessment Syntax” on page 3-67

Related Examples
• “Assess Model Simulation Using verify Statements” on page 3-18
• “Generate Test Signals” on page 3-44
• “Transitions, Temporal Operators, and Messages in Test Sequence Blocks” on page 3-37
• “Use Stateflow Chart for Test Harness Inputs and Scheduling” on page 3-8

 Transitions, Temporal Operators, and Messages in Test Sequence Blocks

3-43

Generate Test Signals
In this section...
“Signal Generation Functions” on page 3-44
“Sinusoidal and Random Number Functions in Test Sequences” on page 3-46

In the Test Sequence block, you can generate signals to use for testing. First, define an output data
symbol using the Data Symbols pane, and then use that output name with a signal generation
function in a test step. For information on adding symbols, see “Manage Input, Output, and Data
Objects” on page 3-32. For an example that shows how to implement signal functions in a Test
Sequence block, see “Sinusoidal and Random Number Functions in Test Sequences” on page 3-46

Signal Generation Functions
The following table lists common functions you can use in the Test Sequence block to create test
signals, random number values, and natural exponents. It also describes the latch function, which
saves and returns a specific value evaluated within a test sequence step. For more information about
each function, click its name in the first column.

Some signal generation functions use the temporal operator et, which is the elapsed time of the test
step in seconds. For additional operators related to et that you can use in test sequence steps, see
“Temporal Operators” on page 3-37.

Note Scaling, rounding, and other approximations of argument values can affect function outputs.

Function Syntax Description Example
sin sin(x) Returns the sine of x, where x

is in radians.
A sine wave with a period of
10 sec:

sin(et*2*pi/10)

cos cos(x) Returns the cosine of x, where
x is in radians.

A cosine wave with a period of
10 sec:

cos(et*2*pi/10)

square square(x) Square wave output with a
period of 1 and range –1 to 1.

Within the interval 0 <= x <
1, square(x) returns the
value 1 for 0 <= x <
0.5and –1 for 0.5 <= x <
1.

square is not supported in
Stateflow charts.

Output a square wave with a
period of 10 sec:

square(et/10)

3 Test Sequences and Assessments

3-44

Function Syntax Description Example
sawtooth sawtooth(x) Sawtooth wave output with a

period of 1 and range –1 to 1.

Within the interval 0 <= x <
1, sawtooth(x) increases.

sawtooth is not supported in
Stateflow charts.

Output a sawtooth wave with
a period of 10 sec:

sawtooth(et/10)

triangle triangle(x) Triangle wave output with a
period of 1 and range –1 to 1.

Within the interval 0 <= x <
0.5, triangle(x) increases.

triangle is not supported in
Stateflow charts.

Output a triangle wave with a
period of 10 sec:

triangle(et/10)

ramp ramp(x) Ramp signal of slope 1,
returning the value of the
ramp at time x.

ramp(et) effectively returns
the elapsed time of the test
step.

ramp is not supported in
Stateflow charts.

Ramp one unit for every 5
seconds of test step elapsed
time:

ramp(et/5)

heaviside heaviside(x) Heaviside step signal,
returning 0 for x < 0 and 1
for x >= 0.

heaviside is not supported
in Stateflow charts.

Output a heaviside signal
after 5 seconds:

heaviside(et-5)

exp exp(x) Returns the natural
exponential function, ex.

An exponential signal
progressing at one tenth of
the test step elapsed time:

exp(et/10)

rand rand Uniformly distributed
pseudorandom values

Generate new random values
for each simulation by
declaring rand extrinsic with
coder.extrinsic. Assign
the random number to a local
variable. For example:

coder.extrinsic('rand')
nr = rand
sg = a + (b-a)*nr

 Generate Test Signals

3-45

Function Syntax Description Example
randn randn Normally distributed

pseudorandom values
Generate new random values
for each simulation by
declaring randn extrinsic
with coder.extrinsic.
Assign the random number to
a local variable. For example:

coder.extrinsic('randn')
nr = randn
sg = nr*2

latch latch(x) Saves the value of x at the
first time latch(x) evaluates
in a test step, and
subsequently returns the
saved value of x. Resets the
saved value of x when the
step exits. Reevaluates
latch(x) when the step is
next active.

latch is not supported in
Stateflow charts.

Latch b to the value of
torque:

b = latch(torque)

Sinusoidal and Random Number Functions in Test Sequences
This example shows how to produce a sine and a random number test signal in a Test Sequence
block.

If you recreate this test sequence, before running it, set the nr symbol size and type. Hover over the
nr symbol and click its Edit icon to open the Data Inspector. Set the Size to 1 and the Type to
double.

The step Sine outputs a sine wave with a period of 10 seconds, specified by the argument
et*2*pi/10. The step Random outputs a random number in the interval -0.5 to 0.5.

3 Test Sequences and Assessments

3-46

The test sequence produces signal sg.

 Generate Test Signals

3-47

See Also
Test Sequence | “Test Sequence and Assessment Syntax” on page 3-67

Related Examples
• “Assess Model Simulation Using verify Statements” on page 3-18
• “Transitions, Temporal Operators, and Messages in Test Sequence Blocks” on page 3-37
• “Using an External Function in a Test Sequence Block” on page 3-49

3 Test Sequences and Assessments

3-48

Using an External Function in a Test Sequence Block
This example shows how to call an externally-defined function from the Test Sequence block. Define a
function in a script on the MATLAB® path, and call the function from the test sequence.

In this example, the step ReducedSine reduces the signal sg using the function Attenuate.

The test sequence produces signal sg and attenuated signal asg.

 Using an External Function in a Test Sequence Block

3-49

3 Test Sequences and Assessments

3-50

Programmatically Create a Test Sequence
This example shows how to create a test harness and test sequence using the programmatic
interface. You create a test harness and a Test Sequence block, and author a test sequence to verify
two functional attributes of a cruise control system.

Create a Test Harness Containing a Test Sequence Block

1. Load the model.

model = 'sltestCruiseChart';
load_system(model)

2. Create the test harness.

sltest.harness.create(model,'Name','Harness1',...
 'Source','Test Sequence')
sltest.harness.load(model,'Harness1');
set_param('Harness1','StopTime','15');

Author the Test Sequence

1. Add a local variable endTest and set the data type to boolean. You use endTest to transition
between test steps.

sltest.testsequence.addSymbol('Harness1/Test Sequence','endTest',...
 'Data','Local');

sltest.testsequence.editSymbol('Harness1/Test Sequence','endTest',...
 'DataType','boolean');

2. Change the name of the step Run to Initialize1.

sltest.testsequence.editStep('Harness1/Test Sequence','Run',...
 'Name','Initialize1');

3. Add a step BrakeTest. BrakeTest checks that the cruise control disengages when the brake is
applied. Add substeps defining the test scenario actions and verification.

sltest.testsequence.addStepAfter('Harness1/Test Sequence',...
 'BrakeTest','Initialize1','Action','endTest = false;')

 % Add a transition from |Initialize1| to |BrakeTest|.
 sltest.testsequence.addTransition('Harness1/Test Sequence',...
 'Initialize1','true','BrakeTest')

 % This sub-step enables the cruise control and sets the speed.
 % |SetValuesActions| is the actions for BrakeTest.SetValues.
 setValuesActions = sprintf('CruiseOnOff = true;\nSpeed = 50;');
 sltest.testsequence.addStep('Harness1/Test Sequence',...
 'BrakeTest.SetValues','Action',setValuesActions)

 % This sub-step engages the cruise control.
 setCCActions = sprintf('CoastSetSw = true;');
 sltest.testsequence.addStepAfter('Harness1/Test Sequence',...
 'BrakeTest.Engage','BrakeTest.SetValues','Action',setCCActions)

 % This step applies the brake.

 Programmatically Create a Test Sequence

3-51

 brakeActions = sprintf('CoastSetSw = false;\nBrake = true;');
 sltest.testsequence.addStepAfter('Harness1/Test Sequence',...
 'BrakeTest.Brake','BrakeTest.Engage','Action',brakeActions)

 % This step verifies that the cruise control is off.
 brakeVerifyActions = sprintf('verify(engaged == false)\nendTest = true;');
 sltest.testsequence.addStepAfter('Harness1/Test Sequence',...
 'BrakeTest.Verify','BrakeTest.Brake','Action',brakeVerifyActions)

 % Add transitions between steps.
 sltest.testsequence.addTransition('Harness1/Test Sequence',...
 'BrakeTest.SetValues','true','BrakeTest.Engage')
 sltest.testsequence.addTransition('Harness1/Test Sequence',...
 'BrakeTest.Engage','after(2,sec)','BrakeTest.Brake')
 sltest.testsequence.addTransition('Harness1/Test Sequence',...
 'BrakeTest.Brake','true','BrakeTest.Verify')

4. Add a step Initialize2 to initialize component inputs. Add a transition from BrakeTest to
Initialize2.

init2Actions = sprintf(['CruiseOnOff = false;\n'...
 'Brake = false;\n'...
 'Speed = 0;\n'...
 'CoastSetSw = false;\n'...
 'AccelResSw = false;']);
sltest.testsequence.addStepAfter('Harness1/Test Sequence',...
 'Initialize2','BrakeTest','Action',init2Actions)
sltest.testsequence.addTransition('Harness1/Test Sequence',...
 'BrakeTest','endTest == true','Initialize2')

5. Add a step LimitTest. LimitTest checks that the cruise control disengages when the vehicle
speed exceeds the high limit. Add a transition from the Initialize2 step, and add sub-steps to
define the actions and verification.

sltest.testsequence.addStepAfter('Harness1/Test Sequence',...
 'LimitTest','Initialize2')
sltest.testsequence.addTransition('Harness1/Test Sequence',...
 'Initialize2','true','LimitTest')

 % Add a step to enable cruise control and set the speed.
 setValuesActions2 = sprintf('CruiseOnOff = true;\nSpeed = 60;');
 sltest.testsequence.addStep('Harness1/Test Sequence',...
 'LimitTest.SetValues','Action',setValuesActions2)

 % Add a step to engage the cruise control.
 setCCActions = sprintf('CoastSetSw = true;');
 sltest.testsequence.addStepAfter('Harness1/Test Sequence',...
 'LimitTest.Engage','LimitTest.SetValues','Action',setCCActions)

 % Add a step to ramp the vehicle speed.
 sltest.testsequence.addStepAfter('Harness1/Test Sequence',...
 'LimitTest.RampUp','LimitTest.Engage','Action','Speed = Speed + ramp(5*et);')

 % Add a step to verify that the cruise control is off.
 highLimVerifyActions = sprintf('verify(engaged == false)');
 sltest.testsequence.addStepAfter('Harness1/Test Sequence',...
 'LimitTest.VerifyHigh','LimitTest.RampUp','Action',highLimVerifyActions)

3 Test Sequences and Assessments

3-52

 % Add transitions between steps. The speed ramp transitions when the
 % vehicle speed exceeds 90.
 sltest.testsequence.addTransition('Harness1/Test Sequence',...
 'LimitTest.SetValues','true','LimitTest.Engage')
 sltest.testsequence.addTransition('Harness1/Test Sequence',...
 'LimitTest.Engage','true','LimitTest.RampUp')
 sltest.testsequence.addTransition('Harness1/Test Sequence',...
 'LimitTest.RampUp','Speed > 90','LimitTest.VerifyHigh')

Open the test harness to view the test sequence.

sltest.harness.open(model,'Harness1');

Double-click the Test Sequence block to open the editor and view the test sequence.

 Programmatically Create a Test Sequence

3-53

Close the Test Harness and Model

sltest.harness.close(model,'Harness1');
close_system(model,0);

See Also
“Test Sequence and Assessment Syntax” on page 3-67

3 Test Sequences and Assessments

3-54

Programmatically Create and Run Test Sequence Scenarios
This example shows how to create and define multiple test scenarios in a single Test Sequence block.
Being able to define more than one test sequence in a block lets you reduce the number of separate
Test Sequence blocks in your test harness.

This example uses the HeatPumpScenario1 model, which already has a test harness that contains a
Test Sequence block. In this example, you convert the block to use scenarios, add a new scenario to
the block, edit a scenario step, and activate the new scenario so that it runs when the model
simulates.

This example also shows how to use scenarios in iterations to run multiple iterations in a single test
case.

Open the Model and Test Harness

Open the Controller subsystem of the HeatPumpScenario1 model and its test harness,
ScenarioTest.

open_system('HeatPumpScenario1')
sltest.harness.open('HeatPumpScenario1/Controller','ScenarioTest');

Set Up the Scenarios

Enable Scenarios

Set the Test Sequence block to use scenarios. The existing steps and transitions are moved into a
scenario that, in this example, is named FirstScenario. Note that once you change a Test
Sequence block to use scenarios, you cannot revert that block to non-scenario mode.

sltest.testsequence.useScenario('ScenarioTest/Test Sequence',...
 'FirstScenario');

Add Another Scenario

Add a second scenario to the Test Sequence block. Name the scenario NewScenario.

sltest.testsequence.addScenario('ScenarioTest/Test Sequence','NewScenario');

Edit the Scenario Contents

Edit the first step of the new scenario to change the values of the Troom_in and Tset variables.
Preface the name of the step with the scenario name that contains the step. Similarly, when adding or
changing transitions, you must also preface the transition with the scenario name.

action = sprintf('Troom_in = 75;\nTset = 75;\n');
sltest.testsequence.editStep('ScenarioTest/Test Sequence',...
 'NewScenario.step_1','Action',action);

To view the scenario contents, use sltest.testsequence.findStep(blockPath), which returns
an array containing the step names for all scenarios. Then, use
sltest.testsequence.readStep(stepName) or
sltest.testsequence.readTransition(stepName) to see the contents of the specified step or
transition, respectively. You can also view the scenario contents by double-clicking the Test Sequence
block in the harness to open the block editor.

 Programmatically Create and Run Test Sequence Scenarios

3-55

Specify Which Scenario to Run

Specify the new scenario to run during model simulation. This scenario is the active scenario, which
is the only scenario that runs during the simulation. For an alternative way to activate and run a
scenario, or to run scenarios using iterations, see below.

sltest.testsequence.activateScenario('ScenarioTest/Test Sequence',...
 'NewScenario');

Run the Model

Run the Model Using the New Scenario

You can run only one active scenario a time, unless you use a loop at the command line or in a script,
or run iterations (see below). Note that fast restart is supported when switching active scenarios and
running the model.

sim('ScenarioTest')

In the test harness, view the Scope blocks to see the simulation results for the new scenario.

Run a Different Scenario

Activate the first scenario.

sltest.testsequence.activateScenario('ScenarioTest/Test Sequence',...
 'FirstScenario');

Rerun the model.

sim('ScenarioTest')

In the test harness, view the Scope blocks to see the simulation results for the first scenario.

Use a Workspace Variable to Activate and Run a Scenario

In some cases, such as for looping through scenarios, you might want to use a workspace variable to
control which scenario to activate, instead of using activateScenario. The steps for using a
workspace variable are:

1 Set the scenario control source to the workspace by using
sltest.testsequence.setScenarioControlSource('ScenarioTest/Test
Sequence',sltest.testsequence.ScenarioControlSource.Workspace);

2 Create a variable in the base workspace, model workspace, or data dictionary to specify the
active scenario using its index value. For example, Active_Scenario_Index = 1;

3 Run the model, which uses the steps and transitions in the active scenario.

To run a different scenario, change the Active_Scenario_Index to the desired scenario, for
example, Active_Scenario_Index = 2, and then rerun the model.

To change the name of the active scenario parameter from Active_Scenario_Index to, for
example, ScenarioIndex, use sltest.testsequence.editSymbol('ScenarioTest/Test
Sequence',... 'Active_Scenario_Index','Name','ScenarioIndex');

and then create the ScenarioIndex variable in the base workspace. Use Scenario_Index = 2 to
set the variable to run the scenario identified by index 2, and then run the model.

3 Test Sequences and Assessments

3-56

Run Scenarios Using Iterations

You can use iterations to run multiple scenarios in a single test case. The following steps use the
same model, Test Sequence block, and scenarios defined above.

1. Set up the test file, test suite, and test case.

tf = sltest.testmanager.TestFile('Scenario Iterations Test');
ts = getTestSuites(tf);
tc = createTestCase(ts,'simulation','Sim Iterations');

2. Set the model and test harness for the test case.

setProperty(tc,'Model','HeatPumpScenario1');
setProperty(tc,'HarnessOwner','HeatPumpScenario1/Controller','HarnessName','ScenarioTest');

3. Get the names of the scenarios in the Test Sequence block.

tseq_block = 'ScenarioTest/Test Sequence';
scenarioNames = sltest.testsequence.getAllScenarios(tseq_block);

4. Set the Test Sequence block and default scenario for the test case.

setProperty(tc,'TestSequenceBlock',tseq_block);
setProperty(tc,'TestSequenceScenario','FirstScenario');

5. Use a loop to create the iterations, assign a scenario to each iteration, and add the iterations to the
test case.

for i = 1:numel(scenarioNames)
 testItr = sltestiteration;
 setTestParam(testItr,'TestSequenceScenario',scenarioNames{i});
 addIteration(tc,testItr);
end

6. Run the test case.

run(tc);

Close the Test Harness and Model

sltest.harness.close('HeatPumpScenario1/Controller','ScenarioTest');
close_system('HeatPumpScenario1',0);

See Also
sltest.testsequence.useScenario | sltest.testsequence.setScenarioControlSource |
sltest.testsequence.getActiveScenario | sltest.testsequence.editScenario |
sltest.testsequence.deleteScenario | sltest.testsequence.addScenario |
sltest.testsequence.activateScenario

More About
• “Use Test Sequence Scenarios in the Test Sequence Editor and Test Manager” on page 3-58

 Programmatically Create and Run Test Sequence Scenarios

3-57

Use Test Sequence Scenarios in the Test Sequence Editor and
Test Manager

This example shows how to create and use scenarios in the Test Sequence Editor. Scenarios let you
include multiple test sequences in a Test Sequence block. If your test harness includes more than one
Test Sequence block, you can move each test sequence to a scenario in a single Test Sequence block.

The example also shows how to use the Test Manager to set up and use iterations to run multiple
scenarios in a single test case.

Open the Model and Test Harness

Open the HeatPumpScenario model, ScenarioTest harness, and Test Sequence Editor.

open_system('HeatPumpScenario')
sltest.harness.open('HeatPumpScenario/Controller','ScenarioTest');
open_system('ScenarioTest/Test Sequence')

3 Test Sequences and Assessments

3-58

Enable Scenarios

In the panel on the left side of the Test Sequence Editor, switch to the Scenarios tab and click Use
Scenarios.

In the Start Using Scenarios dialog box, click OK, which confirms that when you switch to
scenario mode you cannot revert the Test Sequence block to non-scenario mode. The existing steps
and transitions are moved into a tab named Scenario_1.

 Use Test Sequence Scenarios in the Test Sequence Editor and Test Manager

3-59

Add a New Scenario

To add a new scenario, in the Scenarios tab, click the plus sign next to Scenario List. Alternatively,
click on the plus sign next to the header of the Scenario_1 tab. The new scenario is named
Scenario_2.

Duplicate a Scenario

To start a new scenario from an existing one, you can duplicate it.

3 Test Sequences and Assessments

3-60

Right-click the Scenario_1 tab label and select Duplicate Scenario_1 from the context menu.
Alternatively, go to the Scenarios side panel, point to Scenario_1 in the Scenario List to display the
Duplicate scenario button, and click it.

The Scenario List section updates and lists the new scenario, Scenario_3, which has the same
content as Scenario_1.

Edit the Steps and Transitions

Modify Scenario_3 to change the transition of the Test_signals step to Troom_in >= 78.

Delete a Scenario

Right-click the Scenario_2 tab label and select Delete Scenario_2 from the context menu.
Alternatively, in the left pane, in the Scenarios tab, point to Scenario_2 to display the Delete
Scenario icon. Click the Delete Scenario icon and then click OK in the dialog box to delete
Scenario_2.

 Use Test Sequence Scenarios in the Test Sequence Editor and Test Manager

3-61

The name of Scenario_3 does not change, but the scenario index shown to the left of the scenario
name in the Scenario List changes to 2 because it is now the second scenario.

Activate Scenario

In the left pane, in the Scenario tab, a black lightning bolt icon and a bold Scenario name indicate
that Scenario_1 is the currently active scenario. If you run the model, only the active scenario runs.

To change the active scenario to Scenario_3, right-click the Scenario_3 tab and select Activate
Scenario_3 from the context menu. Alternatively, in the left pane, in the Scenarios tab, point to
Scenario_3 to display the Click to Activate icon, which is a gray lightning bolt. Click the lightning
bolt to make Scenario_3 the active scenario.

You can also control the active scenario from the command line. See the Programmatically Control
the Active Scenario section below.

Run the Active Scenario

Right-click the Scenario_3 tab label and select Run Scenario_3 from the context menu. If you did
not activate the scenario, the menu option is Activate and Run Scenario_3. Alternatively, run the
model normally to run the active scenario. The Test Sequence Editor displays the active scenario
during model simulation.

Programmatically Control the Active Scenario

You can alternatively use a variable in the base workspace, model workspace, or a data dictionary to
programmatically control the active scenario. To activate a scenario, set the variable value to the
index of the scenario.

3 Test Sequences and Assessments

3-62

1. In the Test Sequence Editor Scenarios tab, go to the Scenario Parameter section.

2. Enable Control active scenario from workspace. The previously active scenario deactivates.
When you control the active scenario using a workspace variable, the Test Sequence Editor does not
know which scenario is active until you click Run.

If you select Control active scenario from workspace, you cannot activate a scenario from the Test
Sequence Editor using the right-click context menu or the Scenario List.

3. For this example, in the base workspace, create a variable named Active_Scenario_Index and
set it to activate the first scenario, Scenario_1, by entering: Active_Scenario_Index =
Simulink.Parameter(1);

4. Return to the Test Sequence Editor and click Run. Scenario_1 runs.

Instead of using Active_Scenario_Index as the name of the variable, you can specify a different
name.

1. For this example, in the Test Sequence Editor, in the Scenario Parameter section, click on
Active_Scenario_Index and enter a new name, such as ChangeScenario.

2. In the base workspace, create a variable named ChangeScenario. Set it to the desired scenario
index, such as 1, by entering: ChangeScenario = Simulink.Parameter(1);.

3. Return to the Test Sequence Editor and click Run. Scenario_1 runs.

Use Iterations to Run Multiple Scenarios in a Test Case

You can run multiple scenarios in a test case by using iterations. This section describes scenarios in
iterations using the Test Manager.

1. In the Test Manager, create a test file, test suite, and simulation test case.

 Use Test Sequence Scenarios in the Test Sequence Editor and Test Manager

3-63

2. In the System Under Test section, set the Model to HeatPumpScenario and the Harness to
ScenarioTest.

3. In the Inputs section, click the Refresh icon next to the Test Sequence Block field to populate it
with paths to Test Sequence blocks in the harness.

4. Set Test Sequence Block to the ScenarioTest/Test Sequence block, which has the scenarios
to use in the iterations.

5. Click the Refresh icon next to the Override with Scenario field to populate it with the scenarios
in the selected block.

6. Set Override with Scenario to Scenario_1, which set that scenario as the default for all
iterations. This scenario overrides the active scenario in the Test Sequence block. In the Iterations
section, you can change this default scenario to another scenario for each iteration.

If you do not select a scenario, the active scenario in the Test Sequence block is used as the default.

7. In the Iterations section, expand Table Iterations, click the plus sign in the upper right of the
table and select Test Sequence Scenario to add that column to the table.

3 Test Sequences and Assessments

3-64

8. Click Add at the bottom of the Table Iterations to add the individual iterations. The Test
Sequence Scenario column for each iteration shows the default scenario. In this case, it shows
[Default] Scenario_1.

Alternatively, click Auto Generate and select Test Sequence Scenario to generate an iteration for
each scenario in the selected Test Sequence block. In the Test Sequence Scenario column, each
iteration is assigned a separate iteration.

9. In the Test Sequence Scenario column of an iteration, click the scenario name to view a list of
available scenarios. Select a different scenario from the default for one of the iterations.

10. Run the test.

See Also
sltest.harness.open

More About
• “Programmatically Create and Run Test Sequence Scenarios” on page 3-55
• “Test Sequence Editor” on page 3-30

 Use Test Sequence Scenarios in the Test Sequence Editor and Test Manager

3-65

Scenario Parameter Section
Use the options in the Scenario Parameter section to control the active scenario with a variable in the
base workspace, model workspace, or a data dictionary.

1 Enable Control active scenario from workspace. The previously active scenario is deactivated
and no active scenario is shown in the Scenario List. When you control the active scenario using
a workspace variable, the Test Sequence Editor does not know which scenario is active until you
click Run.

2 If desired, edit Active_Scenario_Index to change the variable name.
3 Create a variable with the same name in the base workspace, model workspace, or a data

dictionary. For example, in the base workspace, create a variable named
Active_Scenario_Index.

4 Set the value of the variable to the index of the scenario to activate. For example, in the base
workspace, use Active_Scenario_Index = Simulink.Parameter(2) to activate the second
scenario.

5 Click Run in the Test Sequence Editor to run the scenario.

3 Test Sequences and Assessments

3-66

Test Sequence and Assessment Syntax

In this section...
“Assessment Statements” on page 3-67
“Temporal Operators” on page 3-68
“Transition Operators” on page 3-69
“Signal Generation Functions” on page 3-70
“Logical Operators” on page 3-72
“Relational Operators” on page 3-73

This topic describes syntax used within Test Sequence and Test Assessment blocks, and Stateflow
charts. In the blocks, you use this syntax for test step actions, transitions, and assessments. In charts,
you use this syntax in states and transitions.

For information on using the command-line interface to create and edit test sequence steps,
transitions, and data symbols, see the functions listed under Test Sequences on the “Test Scripts”
page.

Test Sequence and Test Assessment blocks use MATLAB as the action language. You can also use
strings, including string comparisons, in test sequence steps and transitions. You define actions,
transitions, assessments with assessment operators, temporal operators, transition operators, signal
generation functions, logical operators, and relational operators. Except for verify, Stateflow charts
can use all operators in MATLAB or C as the action language. verify can be used only with MATLAB
language and you cannot use strings in verify statements. For example:

• To output a square wave with a period of 10 sec:

square(et/10)

• To transition when h changes to 0:

hasChangedTo(h,0)

• To verify that x is greater than y:

verify(x > y)

Assessment Statements
To verify simulation, stop simulation, and return verification results, use assessment statements.

Keyword Statement Syntax Description Example
verify verify(expression)

verify(expression,
errorMessage)

verify(expression,
identifier,
errorMessage)

Assesses a logical
expression. Optional
arguments label
results in the Test
Manager and
diagnostic viewer.

verify(x > y,...
'SimulinkTest:greaterThan',...
'x and y values are %d, %d',...
x,y)

 Test Sequence and Assessment Syntax

3-67

Keyword Statement Syntax Description Example
assert assert(expression)

assert(expression,
errorMessage)

Evaluates a logical
expression. Failure
stops simulation and
returns an error.
Optional arguments
return an error
message.

assert(h==0 && k==0,...
'h and k must '...
'initialize to 0')

Syntax in the table uses these arguments:

expression

Logical statement assessed

Examples:

h > 0 && k == 0

identifier

Label applied to results in the Test Manager

Value: String of the form aaa:bbb:...:zzz, with at least two colon-separated MATLAB identifiers
aaa, bbb, and zzz.

Examples:

'SimulinkTest:greaterThan'

errorMessage

Label applied to messages in the diagnostic viewer

Value: String

Examples:

'x and y values are %d, %d',x,y

Temporal Operators
To create an expression that evaluates the simulation time, use temporal operators. Variables used in
signal conditions must be inputs, parameters, or constants in the Test Sequence block.

Operator Syntax Description Example
et et(TimeUnits) The elapsed time of the

test step in TimeUnits.
Omitting TimeUnits
returns the value in
seconds.

The elapsed time of the test sequence
step in milliseconds:

et(msec)

3 Test Sequences and Assessments

3-68

Operator Syntax Description Example
t t(TimeUnits) The elapsed time of the

simulation in TimeUnits.
Omitting TimeUnits
returns the value in
seconds.

The elapsed time of the simulation in
microseconds:

t(usec)

after after(n,
TimeUnits)

Returns true if n specified
units of time in TimeUnits
elapse since the beginning
of the current test step.

After 4 seconds:

after(4,sec)

before before(n,
TimeUnits)

Returns true until n
specified units of time in
TimeUnits elapse,
beginning with the current
test step.

Before 4 seconds:

before(4,sec)

duration ElapsedTime =
duration
(Condition,
TimeUnits)

Returns ElapsedTime in
TimeUnits for which
Condition has been
true. ElapsedTime is
reset when the test step is
re-entered or when
Condition is no longer
true.

Return true if the time in
milliseconds since Phi > 1 is
greater than 550:

duration(Phi>1,msec) > 550

Syntax in the table uses these arguments:

TimeUnits

The units of time

Value: sec|msec|usec

Examples:

msec

Condition

Logical expression triggering the operator. Variables used in duration can be inputs, parameters, or
constants, with at most one local or output data.

Examples:

u > 0
x <= 1.56

Transition Operators
To create expressions that evaluate signal events, use transition operators. Common transition
operators include:

 Test Sequence and Assessment Syntax

3-69

Operator Syntax Description Example
hasChanged hasChanged(u) Returns true if u

changes in value since
the beginning of the
test step, otherwise
returns false.

u must be an input data
symbol.

Transition when h
changes:

hasChanged(h)

hasChangedFrom hasChangedFrom(u,A) Returns true if u
changes from the value
A, otherwise returns
false.

u must be an input data
symbol.

Transition when h
changes from 1:

hasChangedFrom(h,1)

hasChangedTo hasChangedTo(u,B) Returns true if u
changes to the value B,
otherwise returns false.

u must be an input data
symbol.

Transition when h
changes to 0:

hasChangedTo(h,0)

Signal Generation Functions
The following table lists common functions you can use in the Test Sequence block to create test
signals, random number values, and natural exponents. It also describes the latch function, which
saves and returns a specific value evaluated within a test sequence step. For more information about
each function, click its name in the first column.

Some signal generation functions use the temporal operator et, which is the elapsed time of the test
step in seconds. For additional operators related to et that you can use in test sequence steps, see
“Temporal Operators” on page 3-37.

Note Scaling, rounding, and other approximations of argument values can affect function outputs.

Function Syntax Description Example
sin sin(x) Returns the sine of x, where x

is in radians.
A sine wave with a period of
10 sec:

sin(et*2*pi/10)

cos cos(x) Returns the cosine of x, where
x is in radians.

A cosine wave with a period of
10 sec:

cos(et*2*pi/10)

3 Test Sequences and Assessments

3-70

Function Syntax Description Example
square square(x) Square wave output with a

period of 1 and range –1 to 1.

Within the interval 0 <= x <
1, square(x) returns the
value 1 for 0 <= x <
0.5and –1 for 0.5 <= x <
1.

square is not supported in
Stateflow charts.

Output a square wave with a
period of 10 sec:

square(et/10)

sawtooth sawtooth(x) Sawtooth wave output with a
period of 1 and range –1 to 1.

Within the interval 0 <= x <
1, sawtooth(x) increases.

sawtooth is not supported in
Stateflow charts.

Output a sawtooth wave with
a period of 10 sec:

sawtooth(et/10)

triangle triangle(x) Triangle wave output with a
period of 1 and range –1 to 1.

Within the interval 0 <= x <
0.5, triangle(x) increases.

triangle is not supported in
Stateflow charts.

Output a triangle wave with a
period of 10 sec:

triangle(et/10)

ramp ramp(x) Ramp signal of slope 1,
returning the value of the
ramp at time x.

ramp(et) effectively returns
the elapsed time of the test
step.

ramp is not supported in
Stateflow charts.

Ramp one unit for every 5
seconds of test step elapsed
time:

ramp(et/5)

heaviside heaviside(x) Heaviside step signal,
returning 0 for x < 0 and 1
for x >= 0.

heaviside is not supported
in Stateflow charts.

Output a heaviside signal
after 5 seconds:

heaviside(et-5)

exp exp(x) Returns the natural
exponential function, ex.

An exponential signal
progressing at one tenth of
the test step elapsed time:

exp(et/10)

 Test Sequence and Assessment Syntax

3-71

Function Syntax Description Example
rand rand Uniformly distributed

pseudorandom values
Generate new random values
for each simulation by
declaring rand extrinsic with
coder.extrinsic. Assign
the random number to a local
variable. For example:

coder.extrinsic('rand')
nr = rand
sg = a + (b-a)*nr

randn randn Normally distributed
pseudorandom values

Generate new random values
for each simulation by
declaring randn extrinsic
with coder.extrinsic.
Assign the random number to
a local variable. For example:

coder.extrinsic('randn')
nr = randn
sg = nr*2

latch latch(x) Saves the value of x at the
first time latch(x) evaluates
in a test step, and
subsequently returns the
saved value of x. Resets the
saved value of x when the
step exits. Reevaluates
latch(x) when the step is
next active.

latch is not supported in
Stateflow charts.

Latch b to the value of
torque:

b = latch(torque)

Logical Operators
You can use logical connectives in actions, transitions, and assessments. In these examples, p and q
represent Boolean signals or logical expressions.

Operation Syntax Description Example
Negation ~p not p verify(~p)
Conjunction p && q p and q verify(p && q)
Disjunction p || q p or q verify(p || q)
Implication ~p || q if p, q. Logically

equivalent to
implication p → q.

verify(~p || q)

3 Test Sequences and Assessments

3-72

Operation Syntax Description Example
Biconditional (p && q) || (~p &&

~q)
p and q, or not p and
not q. Logically
equivalent to
biconditional p ↔ q.

verify((p && q) ||
(~p && ~q))

Relational Operators
You can use relational operators in actions, transitions, and assessments. In these examples, x and y
represent numeric-type variables.

Using == or ~= operators in a verify statement returns a warning when comparing floating-point
data. Consider the precision limitations associated with floating-point numbers when implementing
verify statements. See “Floating-Point Numbers”. If you use floating-point data, consider defining a
tolerance for the assessment. For example, instead of verify(x == 5), verify x within a tolerance
of 0.001:

verify(abs(x-5) < 0.001)

Operator and Syntax Description Example
x > y Greater than verify(x > y)
x < y Less than verify(x < y)
x >= y Greater than or equal to verify(x >= y)
x <= y Less than or equal to verify(x <= y)
x == y Equal to verify(x == y)
x ~= y Not equal to verify(x ~= y)

See Also

Related Examples
• “Assess Model Simulation Using verify Statements” on page 3-18
• “Transitions, Temporal Operators, and Messages in Test Sequence Blocks” on page 3-37
• “Generate Test Signals” on page 3-44
• “Programmatically Create a Test Sequence” on page 3-51

 Test Sequence and Assessment Syntax

3-73

Debug a Test Sequence
In this section...
“View Test Step Execution During Simulation” on page 3-74
“Set Breakpoints to Enable Debugging” on page 3-74
“View Data Values During Simulation” on page 3-75
“Step Through Simulation” on page 3-75

You can debug a test sequence using tools in the Test Sequence Editor. Debugging involves setting
breakpoints to stop simulation, observing data and test sequence progression, and manually stepping
through test steps. You can try these features using the model sltestTestSeqDebuggingExample,
which is in the matlab/help//toolbox/sltest/examples folder. To open the model, enter

open_system('sltestTestSeqDebuggingExample')

Save a copy of the model to a writable location on the MATLAB path. Double-click the Test Sequence
block to open the Test Sequence Editor.

View Test Step Execution During Simulation
By default, simulation animates the test sequence by highlighting active steps and transitions.
Observing test step execution can help you debug, particularly when manually stepping through the

test sequence. Adjust the animation speed using the Change Animation Speed button in the
toolbar.

Animation speed affects simulation speed. If you slow down animation speed for debugging, return
the speed to Fast or Lightning Fast when you finish debugging to avoid slowing your simulation. If
you do not need the test step highlights and want the fastest simulation, choose None.

Set Breakpoints to Enable Debugging
You enable debugging for a test sequence by adding one or more regular or conditional breakpoints.
Regular breakpoints halt simulation every time the test step is evaluated. Therefore, breakpoints on
some test steps, such as When decomposition parent steps, halt simulation repeatedly because the
step is evaluated repeatedly. Conditional breakpoints halt simulation only when the specified
condition is met. When simulation halts, you can view the data used in the test sequence to
investigate the sequence simulation behavior.

You can add regular and conditional breakpoints to test step actions and transitions.

• To add a regular breakpoint to a test step, right-click the step or action and select Break while
executing step. For a transition, point to the transition, click the gear icon , and select Break
when transition taken. A red icon indicates a regular breakpoint.

3 Test Sequences and Assessments

3-74

• To add a conditional breakpoint, first add a regular breakpoint. Then, right-click the breakpoint
icon and select Set or Modify Condition.

In the text field of the dialog box, specify the condition to apply to the step or transition and click
Apply Condition. To indicate that it is a conditional breakpoint, the icon color changes to yellow.

• To change a conditional breakpoint back to a regular breakpoint, right-click the breakpoint icon
and select Set or Modify Condition. Delete the conditional text and click Apply Condition. The
breakpoint icon color changes to red.

• You can remove a breakpoint using these methods:

• Click the breakpoint icon.
• Right-click the breakpoint icon and select Clear Breakpoint.
• For a step or action, right-click the step breakpoint icon and deselect Break while executing

step. For a transition, point to the transition, click the gear, and deselect Break when
transition taken.

After adding breakpoints, simulate the test sequence by clicking Run.

View Data Values During Simulation
If the simulation pauses (for example, at a breakpoint), you can view the status of data used in a test
step by hovering over the test step. The data values at the current simulation time display next to the
test sequence cell.

Note If you advance the simulation to another stop (for example, using the keyboard shortcuts), the
data display does not update. Move off the test step and then hover over the step again to refresh the
values.

Step Through Simulation
When simulation halts, you can step through the test sequence using the toolbar buttons.

 Debug a Test Sequence

3-75

Objective Details Toolbar Button
Simulate until
breakpoint

Simulation runs until the
next breakpoint

Step forward through
simulation time

Simulation advances one
simulation step

Step forward through
test step actions and
transitions

Simulation advances by
each step of a test
sequence, with pauses at
actions and transitions.
Does not step into a
function call.

Step in to a test step
group or called function

Simulation advances into
the substeps of a parent
step and executes each
action and transition. Steps
into a function call.

Step out of a test step
group or called function

Simulation advances
through the remaining
substeps of a parent step
and then out to the parent
step hierarchy level. Also
finishes execution of a
function call.

See Also
Test Sequence | “Test Sequence Editor” on page 3-30

3 Test Sequences and Assessments

3-76

Test Downshift Points of a Transmission Controller
This example demonstrates how to test a transmission shift logic controller using test sequences and
test assessments.

The Model and Controller

This example uses the TransmissionDownshiftTestSequence model, which is a simplified
drivetrain system arranged in a controller-plant configuration. The objective is to unit test the
downshift behavior of the transmission controller.

The Test

The controller should downshift between gear ratios in response to a increasing throttle application.
The test inputs hold vehicle speed constant while ramping the throttle. The Test Assessment block
includes requirements-based assessments of the controller performance.

Open the Test Harness

Click the badge on the subsystem shift_controller and open the test harness
controller_harness. The test harness contains a Test Sequence block and a Test Assessment
block connected to the controller subsystem.

 Test Downshift Points of a Transmission Controller

3-77

The Test Sequence

Double-click the Test Sequence block to open the Test Sequence Editor.

The test sequence ramps speed to 75 to initialize the controller in fourth gear. Throttle is then
ramped at constant speed until a gear change. Subsequent initialization and downshifts execute.
After the change to first gear, the test sequence stops.

3 Test Sequences and Assessments

3-78

Test Assessments for the Controller

This example tests the following conditions:

• Speed value shall be greater than or equal to 0.
• Gear value shall be greater than 0.
• Throttle value shall be between 0 and 100.
• The shift controller shall keep the vehicle speed below specified maximums in each of the first

three gears.

Open the Test Assessment block. The assert statements correspond to the first three conditions. If
the controller violates an assertion, the simulation fails.

assert(speed >= 0, 'speed must be >= 0');
assert(throttle >= 0, 'throttle must be >= 0 and <= 100');
assert(throttle <= 100, 'throttle must be >= 0 and <= 100');
assert(gear > 0,'gear must be > 0');

 Test Downshift Points of a Transmission Controller

3-79

The last condition is checked by three verify statements corresponding to the maximum speeds in
gears 3, 2, and 1:

• Vehicle speed shall not exceed 90 in gear 3.
• Vehicle speed shall not exceed 50 in gear 2.
• Vehicle speed shall not exceed 30 in gear 1.

A When decomposition sequence contains the verify statements. In the When decomposition
sequence, signal conditions determine the active step. A step includes a condition preceded by the
when operator. The last step Else covers undefined conditions and does not use a when statement.
For more information on When decomposition, see "Transition Types" in “Test Sequence Basics” on
page 3-2.

OverSpeed3 when gear==3
verify(speed <= 90,'Engine overspeed in gear 3')

OverSpeed2 when gear==2
verify(speed <= 50,'Engine overspeed in gear 2')

OverSpeed1 when gear==1
verify(speed <= 30,'Engine overspeed in gear 1')

Testing the Controller

Simulating the test harness demonstrates the progressive throttle ramp at each test step and the
corresponding downshifts. The controller passes all of the assessments in the Test Assessment block.

3 Test Sequences and Assessments

3-80

View the Results

Click the Simulation Data Inspector button in the test harness toolstrip to view the results. You can
compare the speed signal to the verify statement outputs.

 Test Downshift Points of a Transmission Controller

3-81

Examine Model Verification Results by Using Simulation Data
Inspector

This example shows how to use the Simulation Data Inspector to view the output from a model
verification block in a system under test. If you have Simulink® Test™, model verification blocks
return Pass, Fail, or Untested results at each time step. By examining the results of a model
verification block, you can:

• Determine the simulation time when a failure occurs.
• Compare the verification results with other relevant signals.
• Trace failures from the Simulation Data Inspector back to the model.

For more information, see “Model Verification Blocks” on page 3-16.

Verify Model Behavior With Assertion Block

In this example, the subsystem block Controller models the cruise control system in a car. This
subsystem outputs the throttle value based on the difference between the actual and target speeds.

The verification subsystem Safety Properties uses an Assertion block to check that the system
disengages when the brake is applied for three consecutive time steps.

3 Test Sequences and Assessments

3-82

Determine Simulation Time of Failure

Simulate the model and view the output of the Assertion block in the Simulation Data Inspector.

1 In the Simulation tab, click Run.
2 In the Simulation tab, under Review Results, select Data Inspector.
3 In the Simulation Data Inspector navigation pane, select BrakeAssertion.

The results show that the assertion fails at 0.23 seconds.

 Examine Model Verification Results by Using Simulation Data Inspector

3-83

Compare Verification Results with Other Signals

Examine the cause of the failure by plotting the values of the brake and throttle signals.

1 Right-click the throt signal and select Log Selected Signals.
2 Simulate the model.
3 Configure the Simulation Data Inspector with two subplots.
4 In the Simulation Data Inspector navigation pane, select the signals to plot. For the first subplot,

select BrakeAssertion. For the second subplot, select Controller:1 (throttle) and Inputs:3
(brake).

The results show that pressing the brake at 0.2 seconds does not disengage the throttle.

3 Test Sequences and Assessments

3-84

Trace Failure Back to the Model

Find the block that produces a verification result by tracing the result from the Simulation Data
Inspector back to the model. In the Simulation Data Inspector navigation pane, right-click
BrakeAssertion and select Highlight in Model. The editor opens the verification subsystem and
highlights the Assertion block.

See Also
sltest.getAssessments | Assertion | Implies (Simulink Design Verifier) | Proof Assumption

 Examine Model Verification Results by Using Simulation Data Inspector

3-85

Fix Requirements-Based Testing Issues
This example shows how to address common traceability issues in model requirements and tests by
using the Model Testing Dashboard. The dashboard analyzes the testing artifacts in a project and
reports metric data on quality and completeness measurements such as traceability and coverage,
which reflect guidelines in industry-recognized software development standards, such as ISO 26262
and DO-178C. The dashboard widgets summarize the data so that you can track your requirements-
based testing progress and fix the gaps that the dashboard highlights. You can click the widgets to
open tables with detailed information, where you can find and fix the testing artifacts that do not
meet the corresponding standards.

Collect Metrics for the Testing Artifacts in a Project

The dashboard displays testing data for a model and the artifacts that the unit traces to within a
project. For this example, open the project and collect metric data for the artifacts.

1 Open the project that contains the models and testing artifacts. For this example, in the
MATLAB® Command Window, enter dashboardCCProjectStart('incomplete').

2 Open the dashboard. To open the Model Testing Dashboard: on the Project tab, click Model
Testing Dashboard or enter modelTestingDashboard at the command line.

3 In the Artifacts panel, the dashboard organizes unit models under the component models that
contain them in the model hierarchy. Artifacts such as requirements, test cases, and test results
appear under the units that they trace to. View the metric results for the unit
db_DriverSwRequest. In the Artifacts panel, click the name of the unit,
db_DriverSwRequest. When you initially select db_DriverSwRequest, the dashboard collects
the metric results for uncollected metrics and populates the widgets with the data for the unit.

3 Test Sequences and Assessments

3-86

Link a Requirement to its Implementation in a Model

On the Artifacts panel, the Trace Issues folder shows artifacts that do not trace to unit models in
the project. The Trace Issues folder contains subfolders for:

• Unexpected Implementation Links — Requirement links of Type Implements for a
requirement of Type Container or Type Informational. The dashboard does not expect these
links to be of Type Implements because container requirements and informational requirements
do not contribute to the Implementation and Verification status of the requirement set that they
are in. If a requirement is not meant to be implemented, you can change the link type. For
example, you can change a requirement of Type Informational to have a link of Type Related
to.

• Unresolved and Unsupported Links — Requirement links which are broken or not supported by
the dashboard. For example, if a model block implements a requirement, but you delete the model
block, the requirement link is now unresolved. If a requirement links to or from a data dictionary,
the link is not supported and the Model Testing Dashboard does not trace the link. The Model
Testing Dashboard does not support traceability analysis for some artifacts and some links. If you
expect a link to trace to a unit and it does not, see the troubleshooting solutions in “Resolve
Missing Artifacts, Links, and Results in the Model Testing Dashboard” (Simulink Check).

• Untraced Tests — Tests that execute on models or subsystems that are not on the project path.

 Fix Requirements-Based Testing Issues

3-87

• Untraced Results — Results that the dashboard can no longer trace to a test case. For example,
if a test case produces results, but you delete the test case, the results can no longer be traced to
the test case.

Address Testing Traceability Issues

Open the dashboard for the unit db_DriverSwRequest by clicking the name of the unit in the
Artifacts panel. The widgets in the Test Case Analysis section of the dashboard show data about
the unit requirements, test cases for the unit, and links between them. The widgets indicate if there
are gaps in testing and traceability for the implemented requirements.

Link Requirements and Test Cases

For the unit db_DriverSwRequest, the Tests Linked to Requirements section shows that some of
the test cases are missing links to requirements in the model.

To see detailed information about the missing links, in the Tests Linked to Requirements section,
click the widget Unlinked. The dashboard opens the Metric Details for the widget with a table of
metric values and hyperlinks to each related artifact. The table shows the test cases that are
implemented in the unit, but do not have links to requirements. The table is filtered to show only test
cases that are missing links to requirements.

The test case Detect long decrement is missing linked requirements.

1 Open the test case in the Test Manager. In the Artifact column of the table, click Detect long
decrement. For this example, the test case needs to link to three requirements that already exist
in the project. If there were not already requirements, you could add a requirement by using the
Requirements Editor.

2 Open the software requirements in the Requirements Editor. In the Artifacts panel, expand the
folder db_DriverSwRequest > Functional Requirements > Implemented and double-click
the requirement file db_SoftwareReqs.slreqx.

3 View the software requirements in the container with the summary Driver Switch Request
Handling. Expand db_SoftwareReqs > Driver Switch Request Handling.

4 Select multiple software requirements. Hold down the Ctrl key as you click Output request
mode, Avoid repeating commands, and Long Increment/Decrement Switch recognition.
Keep these requirements selected in the Requirements Editor.

5 In the Test Manager, expand the Requirements section for the test case Detect long
decrement. Click the arrow next to the Add button and select Link to Selected Requirement.
The traceability link indicates that the test case Detect long decrement verifies the three
requirements Output request mode, Avoid repeating commands, and Long Increment/
Decrement Switch recognition.

6 The metric results in the dashboard reflect only the saved artifact files. To save the test suite
db_DriverSwRequest_Tests.mldatx, in the Test Browser, right-click
db_DriverSwRequest_Tests and click Save.

Refresh Metric Results in the Dashboard

3 Test Sequences and Assessments

3-88

The dashboard detects that the metric results are now stale and shows a warning banner at the top of
the dashboard.

1 Click the Collect button on the warning banner to re-collect the metric data so that the
dashboard reflects the traceability link between the test case and requirements.

2 View the updated dashboard widgets by returning to the Model Testing results. At the top of the
dashboard, there is a breadcrumb trail from the Metric Details back to the Model Testing
results. Click the breadcrumb button for db_DriverSwRequest to return to the Model Testing
results for the unit.

The Tests Linked to Requirements section shows that there are no unlinked tests. The
Requirements Linked to Tests section shows that there are 3 unlinked requirements. Typically,
before running the tests, you investigate and address these testing traceability issues by adding tests
and linking them to the requirements. For this example, leave the unlinked artifacts and continue to
the next step of running the tests.

Test the Model and Analyze Failures and Gaps

After you create and link unit tests that verify the requirements, run the tests to check that the
functionality of the model meets the requirements. To see a summary of the test results and coverage
measurements, use the widgets in the Simulation Test Result Analysis section of the dashboard.
The widgets help show testing failures and gaps. Use the metric results to analyze the underlying
artifacts and to address the issues.

Perform Unit Testing

Run the test cases for the model by using the Test Manager. Save the test results in your project and
review them in the Model Testing Dashboard.

1 Open the unit tests for the model in the Test Manager. In the Model Testing Dashboard, in the
Artifacts panel, expand the unit db_DriverSwRequest. Expand the Tests > Unit Tests folder
and double-click the test file db_DriverSwRequest_Tests.mldatx.

2 In the Test Manager, click Run.
3 Save the test results as a file in the project. On the Tests tab, in the Results section, click

Export. Name the results file Results1.mldatx and save the file under the project root folder.

 Fix Requirements-Based Testing Issues

3-89

The Model Testing Dashboard detects that you exported the results and automatically updates the
Artifacts panel to include the new test results for the unit in the subfolder Test Results > Unit
Simulation.

The dashboard also detects that the metric results are now stale and shows a warning banner at the
top of the dashboard.

The Stale icon appears on the widgets in the Simulation Test Result Analysis
section to indicate that they are showing stale data that does not include the changes.

Click the Collect button on the warning banner to re-collect the metric data and to update the stale
widgets with data from the current artifacts. If you want to collect metrics for each of the units and
components in the project, click Collect > Collect All.

Address Testing Failures and Gaps

For the unit db_DriverSwRequest, the Model Test Status section of the dashboard indicates that
one test failed and one test was disabled during the latest test run.

1 To view the disabled test, in the dashboard, click the Disabled widget. The table shows the
disabled test cases for the model.

3 Test Sequences and Assessments

3-90

2 Open the disabled test in the Test Manager. In the table, click the test artifact Detect long
decrement.

3 Enable the test. In the Test Browser, right-click the test case and click Enabled.
4 Re-run the test. In the Test Browser, right-click the test case and click Run and save the test

suite file.
5 View the updated number of disabled tests. In the dashboard, click the Collect button on the

warning banner. Note that there are now zero disabled tests reported in the Model Test Status
section of the dashboard.

6 View the failed test in the dashboard. Click the breadcrumb button for db_DriverSwRequest to
return to the Model Testing results and click the Failed widget.

7 Open the failed test in the Test Manager. In the table, click the test artifact Detect set.
8 Examine the test failure in the Test Manager. You can determine if you need to update the test or

the model by using the test results and links to the model. For this example, instead of fixing the
failure, use the breadcrumbs to return to the Model Testing results and continue on to examine
test coverage.

Check if the tests that you ran fully exercised the model design by using the coverage metrics. For
this example, the Model Coverage section of the dashboard indicates that some conditions in the
model were not covered. Place your cursor over the Decision bar in the widget to see what percent
of condition coverage was achieved.

1 View details about the decision coverage by clicking one of the Decision bars. For this example,
click the Decision bar for Achieved coverage.

2 In the table, expand the model artifact. The table shows the test case results for the model and
the results files that contains them. For this example, click on the hyperlink to the source file
Results1.mldatx to open the results file in the Test Manager.

3 To see detailed coverage results, use the Test Manager to open the model in the Coverage
perspective. In the Test Manager, in the Aggregated Coverage Results section, in the
Analyzed Model column, click db_DriverSwRequest.

4 Coverage highlighting on the model shows the points that were not covered by the test cases. For
this example, do not fix the missing coverage. For a point that is not covered in your project, you
can add a test to cover it. You can find the requirement that is implemented by the model
element or, if there is none, add a requirement for it. Then you can link the new test case to the
requirement. If the point should not be covered, you can justify the missing coverage by using a
filter.

Once you have updated the unit tests to address failures and gaps in your project, run the tests and
save the results. Then examine the results by collecting the metrics in the dashboard.

Iterative Requirements-Based Testing with the Model Testing Dashboard

In a project with many artifacts and traceability connections, you can monitor the status of the design
and testing artifacts whenever there is a change to a file in the project. After you change an artifact,
use the dashboard to check if there are downstream testing impacts by updating the tracing data and
metric results. Use the Metric Details tables to find and fix the affected artifacts. Track your
progress by updating the dashboard widgets until they show that the model testing quality meets the
standards for the project.

 Fix Requirements-Based Testing Issues

3-91

Assess Temporal Logic by Using Temporal Assessments
Hybrid systems with discrete and continuous time behavior can require complex timing-dependent
signal logic. Simulink Test enables you to assess model timing and event ordering by authoring and
including temporal assessments with test cases in the Test Manager. After you create a temporal
assessment, you can use the API to modify the assessment, add the assessment to another test case,
or remove the assessment from a test case. For more information, see
sltest.testmanager.Assessment, sltest.testmanager.AssessmentSymbol, and
sltest.testmanager.TestCase.

To work with temporal assessments in the Test Manager:

1 Select an assessment template.
2 Enter the assessment conditions.

• Map symbols to model elements, such as signals, time series, or constants.
• View the assessment summary.

3 Run the test case.
4 Use the results to assess the system under test (SUT) against your requirements.

For example, consider a forced oscillation damping problem that has this requirement:

For a signal S, if the signal magnitude exceeds value P, then within d seconds, it must settle below
value Q and stay below Q for u seconds.

Create a Temporal Assessment
To create a temporal assessment:

1 Create or open a test case in the Test Manager.
2 Navigate to the Logical and Temporal Assessments Editor.
3 Click Add Assessment. These assessment templates are available:

• Logical Assessment Templates

• Bounds Check — Check maximum and minimum bounds for signals and expressions.
• Custom — Check if a logical expression holds true for all time steps.

• Temporal Assessment Template

3 Test Sequences and Assessments

3-92

• Trigger-Response — Check for a signal response when a trigger is detected.

For this example, select Trigger-Response.

The Trigger-Response template appears. To finish creating the assessment, you define temporal
assessment conditions in the context of the SUT.

Define Temporal Assessment Conditions
A Trigger-response assessment requires a:

• Trigger parameter
• Response parameter
• Optional Delay parameter

For the forced oscillation damping problem:

1 Select whenever is true as the trigger and enter abs(S) > P as the condition. The trigger
condition is the condition pattern after which the response signal is evaluated. The response
condition is triggered when the magnitude of signal S exceeds value P.

2 Select must stay true for at least as the response and enter abs(S) < Q and u as the
condition and min-time respectively. The response condition describes the behavior of the
SUT in response to the trigger condition. The response condition is that the magnitude of signal
S must settle below value Q and stay below Q for at least u seconds.

3 Select with a delay of at most as the delay type and set d as the max-time parameter. The delay
is an optional time interval that starts from a time reference parameter and continues to the
point where the response condition is expected to be satisfied. The delay is at most d seconds.

All time units are seconds.

 Assess Temporal Logic by Using Temporal Assessments

3-93

When you add a symbol as part of a temporal assessment parameter in the Logical and Temporal
Assessments Editor, it is added to the list of symbols as an unresolved symbol. Resolve symbols by
using the Symbols pane in the editor.

Resolve Assessment Parameter Symbols

To resolve a symbol, right-click the symbol. Two options are available:

1 Map to model element – Use the mapping dialog box to map symbols to a signal, parameter, or
block in the SUT.

Select a symbol to map from the drop-down list at the top of the mapping dialog box.

After you finish mapping symbols to model elements, the Symbols pane displays metadata that
corresponds to the model element.

Signals that are mapped to a symbol used by an assessment in the editor are logged when you
run the test case.

If you map a bus or an array to a symbol, use the Field/Element row in the Symbols pane to
select a scalar signal from the bus or array. For example:

• To map a symbol to a bus signal containing a bus element fieldA, enter .fieldA.
• To map a symbol to the signal element that corresponds to index (5,5) in a signal array, enter

(5,5).
• To combine both expressions, enter .fieldA(5,5).

2 Map to expression – Assign a scalar constant value or variable to a symbol.

When you select Map to expression, you must enter an expression in the Expression field. You
can assign a scalar constant value or a variable that you define in the Assessment Callback
section. See “Define Variables in the Assessment Callback Section” on page 3-109 for more
information on defining variables.

Because the t symbol is automatically bound to the simulation time, you do not need to map it to
an expression. t is not visible in the Symbols pane.

Tip Entering sig = sltest_simout.logsout.get('mySignal') in the Assessment
Callback section and using Map to expression to map a symbol to the sig variable is

3 Test Sequences and Assessments

3-94

equivalent to using Map to model element to map a symbol to the mySignal signal. However,
the Assessment Callback allows you to define variables as a function of test, model, and
simulation data. See “Define Variables in the Assessment Callback Section” on page 3-109 for
more information on defining variables.

If you map a symbol to a discrete data signal that is linearly interpolated, the interpolation is
automatically changed to zero-order hold during the assessment evaluation. Additionally, an

information icon () appears next to the symbol name in the Symbols pane. Point to the icon and a
tooltip appears which indicates that the linear interpolation was overridden.

Review the Temporal Assessment Summary

After you enter the assessment parameters, click the arrow to the left of the assessment description
to view the assessment summary.

The Visual Representation pane provides a graphical illustration of a passing case for the
assessment.

View passing and failing cases for the assessment by clicking the Explore Pattern icon. Select the

type of case you want to view from the drop-down list and click to view different passing and
failing cases.

Evaluate the SUT
Run the test case to evaluate the SUT. Temporal assessments are evaluated after simulation by using
logged signal data. Use the test case results to review the SUT against your requirements.

You can run test cases that contain logical or temporal assessments in multiple releases. For more
information, see “Assess Temporal Logic in Multiple Releases” on page 6-87.

View Assessment Results

View the results of the assessment evaluation from the Results and Artifacts pane of the Test
Manager. Select the test case and click the assessment in the Results tree to open a new
Assessment Result tab. Simulink Test evaluates the assessment and displays the expected behavior
and the actual result of the assessment execution with a description of the assessment failures at
different time steps.

 Assess Temporal Logic by Using Temporal Assessments

3-95

Note The assessment result figures cannot be exported to a Simulink Test report.

Investigate the SUT behavior using the and buttons and the textual descriptions at points of
failure.

For a more detailed investigation, expand the Expression Tree to view results for every individual
element of the assessment.

Use the zoom, pan, and data cursor functionalities to analyze assessment evaluation results in the
Expression Tree.

Link Temporal Assessments to Requirements
If you have a Requirements Toolbox license, you can establish traceability between temporal
assessments and requirements by linking assessments to requirements. To create links to
requirements, select the assessment in the Logical and Temporal Assessments Editor and click the
Requirements column to open the Requirement Editor dialog box. See “Link to Requirements” on
page 1-2 for more information.

3 Test Sequences and Assessments

3-96

See Also

More About
• “Logical and Temporal Assessment Syntax” on page 3-106
• “Assess Temporal Logic in Multiple Releases” on page 6-87

 Assess Temporal Logic by Using Temporal Assessments

3-97

Test Traffic Light Control by Using Logical and Temporal
Assessments

This example shows how to use logical and temporal assessments to test the signal logic for a two-
light traffic intersection. It also shows how to minimize untested results.

The model used in this example represents a controller in a two-light traffic intersection. The changes
between the traffic light states depend on the traffic lights and the timing delay parameters defined
in a Stateflow® chart. For more information about the Stateflow logic used in the model, see
“Monitor Chart Activity by Using Active State Data” (Stateflow).

Open and Run the Model

Open and simulate the model.

model = 'sltestTrafficLight';
open_system(model)
sim(model)

Plot the states of the two lights in the Simulation Data Inspector.

runData = Simulink.sdi.Run.getLatest;
LightState1 = getSignalsByName(runData,'Light1');
LightState2 = getSignalsByName(runData,'Light2');
Simulink.sdi.setSubPlotLayout(2,1);
plotOnSubPlot(LightState1,1,1,true);
plotOnSubPlot(LightState2,1,1,false);

plotOnSubPlot(LightState2,2,1,true);
plotOnSubPlot(LightState1,2,1,false);

Simulink.sdi.view

The traffic lights are approximately on opposite schedules. When one light is in the Green state, the
other light is in the Red state, and vice versa. Additionally, the lights must pass through the Yellow
state when transitioning from Green to Red.

To explore the Stateflow logic, consider:

• Adding a breakpoint in one of the two atomic subcharts to step through the logic. For more
information on debugging state charts, see “Set Breakpoints to Debug Charts” (Stateflow).

• Inspecting the logic using the Sequence Viewer.
• Visualizing different signals using the Simulation Data Inspector.

Requirements and Enumeration Types of the Model

To test the logic of the traffic controller, the Stateflow chart outputs an enumerated type that
corresponds to the Red, Yellow, or Green state of the light. By default, Stateflow automatically
generates the enumerated type definition. To create a custom enumeration definition, see “Define
State Activity Enumeration Type” (Stateflow).

Simulating the model creates the built-in enumeration definition. To confirm that the enumerated
type definition LightModeType exists, use which LightModeType.

3 Test Sequences and Assessments

3-98

Design Requirements

The test file in this example tests the traffic light model against several requirements::

• The number of cars waiting at a light is always greater than or equal to zero.
• At any point in time, at least one of the lights is red.
• Every time the light becomes yellow, it stays yellow for a fixed amount of time within a tolerance

value of 0.5 seconds before changing to red.
• Every time the light becomes green, it stays green between a minimum and maximum time within

a tolerance of 0.5 seconds before changing to yellow.

The test file test the requirements by using a bounds check assessment, a custom assessment, and
two trigger-response assessments. For more information about linking to requirements, see “Link
Temporal Assessments to Requirements” on page 3-96.

Run the Logical and Temporal Assessments

Load the test file and open the test assessments in the Test Manager.

sltest.testmanager.load('test_traffic.mldatx');
sltest.testmanager.view;

Run the Bounds Check Test

Check whether the number of cars waiting at the light is always greater than or equal to zero by
using a bounds check logical assessment. The symbol NumCars is mapped to the output of the
Car_Monitor1 subsystem. The Car_Monitor1 subsystem outputs an int32 type, so the lower-
bound expression is cast as int32(0). For more information about data type requirements, see
“Data Types in Assessment Conditions” on page 3-109.

1 In the Test Manager, click New Test Case 1 in the Test Browser pane.
2 Expand the Logical and Temporal Assessments section of the Test Manager
3 Select Waiting Cars in the table and verify that its Assessment logic is correct.
4 In the upper right of the Visual Representation pane, click the Explore Pattern icon to open the

Pattern Explorer.
5 View the Passing and Failing Examples. This image shows a passing example:

 Test Traffic Light Control by Using Logical and Temporal Assessments

3-99

6. With the Waiting cars assessment selected, run the test case.

7. To view the results, expand the Results in the Results and Artifacts panel.

8. Select New Test Case 1 > Logical and Temporal Assessments > Waiting cars

.

Run the Custom Logical Assessment

Compare the states of both lights at all time steps by using a custom logical assessment.

For safety reasons, at no point in time should both lights be green. In addition, other configurations
are undesirable, such as one green light and one yellow light or two yellow lights. The assessment
checks that one of the lights is always red.

In the Logical and Temporal Assessments section, this assessment uses the symbols, Red and
Yellow, which each correspond to their respective color in the enumerated type definition. For
instance, the Expression field for the Red symbol references the Red enumeration member of the
LightModeType enumeration - LightModeType.Red. The Green symbol appears as an unused
symbol because it is not used until you implement the Green to Yellow assessment. See Create a
Trigger-Response Assessment to Evaluate Green to Yellow Transitions on page 3-0 .

3 Test Sequences and Assessments

3-100

Note that the Visual Representation preview is blank because it is only available for bounds check
and trigger-response assessments. Also, the custom-expression field of the custom check must follow
the syntax rules described in “Logical and Temporal Assessment Conditions” on page 3-108.

1 Return to the Test Browser pane and expand the Logical and Temporal Assessments section.
2 Select Both lights safety check.
3 Rerun the test case.
4 To view the results, expand the Results in the Results and Artifacts pane and select New Test

Case 1 > Logical Temporal Assessments > Both lights safety check.

Run the Trigger Response Logical Assessment

Use a trigger response logical assessment to assess the logic when Light1 transitions from the
Yellow state to the Red state. The assessment triggers when Light1 enters the Yellow state. As
shown in the Stateflow chart, for the after(YELLOWDELAY,sec) transitions in each atomic
subchart, the state switches from Yellow to Red after a fixed delay of YELLOWDELAY seconds. To
meet the requirements, the YELLOWDELAY value is adjusted by a tolerance value, tol for the
assessment in the assessment callback.

 Test Traffic Light Control by Using Logical and Temporal Assessments

3-101

1 Under Logical and Temporal Assessments, enable Light1 YellowToRed Transition
assessment.

2 Verify its Assessment logic summary.
3 Expand the summary and the trigger section and set time-reference to rising edge of

trigger.
4 Run the test case.
5 In the Results and Artifacts pane, click New Test Case 1 > Logical and Temporal

Assessments > Light1 YellowToRed Transition.
6 Observe that the assessment fails.

The Expected Behavior and Actual Result graphs show the assessment failures and the Explanation
section describes the failures. The failures occur at the four points when the assessment triggers. In
Error 1 of 4, the trigger condition becomes true at t = 132.1 and the Explanation section
explains that the test expected the response condition to be true at 132.1 seconds. This result
contradicts the requirement that the light stay yellow for a fixed amount of time before changing to
red. The assessment fails because the evaluation of the response is at the rising edge of the trigger.
The Light1 == Red response should not be evaluated until the trigger is false.

In the Test Browser pane, adjust the time-reference to falling edge of trigger. This setting
ensures that the Light1 == Red response evaluates only when Light1 is no longer yellow.

3 Test Sequences and Assessments

3-102

Rerun the test case. Now the assessment passes at the four points of the simulation where Light1
turns yellow. Additionally, there is a point marked at t = 984.5, which corresponds to the point
after which the assessment can no longer be evaluated. The logic specifies that the trigger condition
must stay true for most YellowDelayWithTol seconds, or 15.5 seconds. After t = 984.5, there is
not enough time left in the simulation to accurately assess the logic.

You might notice similar behavior for other assessments based on the timing parameters supplied to
the trigger.

You can reevaluate the assessments to minimize untested results.

1 Click New Test Case 1 in the current results.
2 At the bottom of the Property-Value pane in the lower left, enable Extended Assessment

Result. The assessments are reevaluated and the results are updated.
3 The plot now shows that there are no untested results.

Create a Trigger-Response Assessment to Evaluate Green to Yellow Transitions

This assessment evaluates the Light1 transitions from Green to Yellow during the first half of
simulation. The assessment triggers when the light changes from Red to Green. As described in the
“Timing of Traffic Lights” (Stateflow), the transition from Green to Yellow occurs within a fixed
window of time based on the greenLightRequested parameter. To set up the parameters and use
the built-in symbol t to restrict the assessment to the first half of the simulation, create an
assessment callback.

Set Up the Parameters

1 In the Test Manager, expand the Logical and Temporal Assessments section.
2 Click Add Assessment and choose Trigger-response.
3 Double click the Name field. Rename the assessment Light1 GreenToYellow.
4 Set the trigger condition. Click the drop-down next to the trigger field and select becomes

true and stays true for between. This logic is required because the light must stay green
before switching to yellow. After you select the trigger type, the condition, min-time (sec),
max-time (sec), and time-reference fields become visible.

5 For condition, enter t<500 & Light1 == Green. The assessment uses the built-in symbol t to
trigger a check when Light1 becomes Green within the first 500 seconds of the simulation.

6 For min-time (sec), enter GreenMin.
7 For max-time (sec), enter GreenMax. Note that GreenMin and GreenMax are not yet defined

and appear as Unresolved symbols in the Symbols pane.

 Test Traffic Light Control by Using Logical and Temporal Assessments

3-103

8 Set the time-reference to falling edge of trigger, which ensures that the response
when Light1 becomes yellow is evaluated only when Light1 is no longer green.

9 Leave the delay as with no delay.
10 Set the response to must be true. This option evaluates a single instance of time and captures

whether the transition to Yellow occurs. After selecting the response type, the condition field
becomes visible.

11 For condition, enter Light1 == Yellow.
12 Resolve the GreenMin and GreenMax symbols, by adding this assessment callback code to the

existing code in the Assessment Callback. The callback extracts the Stateflow parameters that
correspond to the Green transition, then adjusts them by the tolerance value specified in the
requirements to prepare them for the min-time and max-time trigger fields.

greenMin = maskObj.getParameter('MINGREENDELAY');
greenMin = str2double(greenMin.Value);
greenMinAdj = greenMin - tol;

greenMax = maskObj.getParameter('GREENDELAY');
greenMax = str2double(greenMax.Value);
greenMaxAdj = greenMax + tol;

13. In Symbols, right-click the symbol name GreenMin and choose Map to expression.

14. In the Expression field, enter the variable name greenMinAdj.

15. Resolve the symbol GreenMax by repeating steps 13 and 14 by using greenMaxAdj for the
expression.

View the Light1 GreenToYellow Logic

Collapse the assessment to read a summary of its logic:

You can use the Visual Representation to preview the logic of the assessment. After Light1 turns
green, it must stay green for a period of time within the minimum and maximum times. When the
Light1 trigger is false and the light is no longer green, the Light1 trigger is true and the light
changes to yellow .

Run the Assessment and View the Results

Run the assessment.

In the Results and Artifacts pane, expand New Test Case 1 > Logical and Temporal
Assessments. Select Light1 GreenToYellow and observe that the assessment triggers twice in the

3 Test Sequences and Assessments

3-104

first half of the simulation. The trigger times align with the initial Simulation Data Inspector results
on page 3-0 when Light1 enters the Green state at t = 12.1 and t = 282.2.

See Also

Related Examples
• “Logical and Temporal Assessment Syntax” on page 3-106
• “Test Sequence and Assessment Syntax” on page 3-67

 Test Traffic Light Control by Using Logical and Temporal Assessments

3-105

Logical and Temporal Assessment Syntax
Simulink Test provides three logical and temporal assessment templates:

• Logical Assessment Templates

• Bounds Check — Check maximum and minimum bounds for signals and expressions.
• Custom — Check if a logical expression holds true for all time steps.

• Temporal Assessment Template

• Trigger-Response — Check for a signal response when a trigger is detected.

Bounds Check Assessments
Create bounds check assessments to check if the signals and expressions you test satisfy the
boundary condition patterns you specify for them. Boundary condition pattern templates let you test
if signals and expressions in terms of boundary values that you specify are:

• Always less than (or equal to)
• Always greater than (or equal to)
• Always inside
• Always outside

Trigger-Response Assessments
Create trigger-response assessments to verify a signal response when a trigger is detected. A trigger-
response assessment requires:

• Trigger parameter
• Response parameter
• Optional Delay parameter

The trigger condition is the condition pattern based on which the response signal is evaluated. There
are five trigger condition patterns available:

3 Test Sequences and Assessments

3-106

Trigger Condition Pattern Behavior Available Time
References

Whenever is true Check the response
signal continuously
whenever the triggering
condition is true.

N/A

Becomes true Check the response
signal every time the
triggering condition
becomes true.

Rising edge

Becomes true and
stays true for at least

Check the response
signal every time the
triggering condition
becomes true and stays
true for at least the
interval specified by the
min-time parameter
(in s). You also specify
an additional time
reference parameter at
which to evaluate the
response signal.

Rising edge of trigger
or end of min-time

Becomes true and
stays true for at most

Check the response
signal every time the
triggering condition
becomes true and stays
true for at most the
interval specified by the
max-time parameter
(in s). You also specify
an additional time
reference parameter at
which to evaluate the
response signal.

Rising or falling edge of
trigger or end of max-
time

Becomes true and
stays true for between

Check the response
signal every time the
triggering condition
becomes true and stays
true between the
interval specified by the
min-time and max-
time parameters. You
also specify an
additional time
reference parameter at
which to evaluate the
response signal.

Rising or falling edge of
the trigger or end of
min-time or max-time

To complete authoring a trigger-response assessment, you specify the response condition pattern and
the response condition. There are five response condition patterns available:

 Logical and Temporal Assessment Syntax

3-107

Response Condition Pattern Behavior
Must be true The response condition pattern

must be true starting from the
time reference parameter to the
delay (if it is defined).

Must stay true for at least The response condition pattern
must stay true for at least the
duration specified by the min-
time parameter.

Must stay true for at most The response condition pattern
must stay true for at most the
duration specified by the max-
time parameter.

Must stay true for between The response condition pattern
must stay true for at least the
duration specified by the min-
time parameter and at most the
duration specified by the max-
time parameter.

Must stay true until The response condition must
stay true until the until-
condition parameter becomes
true within the duration
specified by the max-time
parameter.

The delay is an optional time interval starting from the time reference parameter to the point where
the response condition is expected to be satisfied. You can set the delay to a maximum value or
specify a time range in seconds.

Custom Assessments
The custom assessments template allows you to specify logical MATLAB expressions that do not fit in
previous templates. Assessments are meant to evaluate signal properties, so all symbols defined in a
custom template must be mapped to signal data (model element or timeseries or a constant scalar
value).

Logical and Temporal Assessment Conditions
You can enter MATLAB expressions that include these operators as the assessment conditions:

• Logical operators: &, |, and ~
• Relational operators: <, <=, ==, ~=, >=, and >
• Arithmetic operators: +, -, and * (multiplication by scalar constants only)
• Cast operators:

• Floating-point number: single and double
• Unsigned integer: uint8, uint16, and uint32

3 Test Sequences and Assessments

3-108

• Signed integer: int8, int16, and int32
• Logical: logical

The functional forms of the logical, relational, and arithmetic operators are not supported. In addition
to operators, you can use the abs function to construct assessment conditions. You can also use the t
symbol to construct assessment conditions, which is automatically bound to simulation time. Use of
the t symbol as a min-time or max-time parameter in assessment conditions is not supported.
Event-based signals are not supported in logical or temporal assessments.

Data Types in Assessment Conditions

Logical and temporal assessment conditions support the built-in data types listed on “Data Types
Supported by Simulink”, with the exception of string. You can also use
Simulink.defineIntEnumType. Fixed-point data types are not supported in assessments.

All operands in an assessment condition must be of the same data type. You can use cast operators to
change the data type of an operand or change an operand to a symbol and map the symbol to an
expression. Read about mapping symbols to expression on “Resolve Assessment Parameter Symbols”
on page 3-94. Read about defining variables for use in an expression on “Define Variables in the
Assessment Callback Section” on page 3-109. When you map a symbol to an expression, the
expression must be the same data type as other operands in the assessment condition.

When mapping a symbol to a bus signal or a multidimensional signal, you must map the symbol to
only one element from the bus or multidimensional signal. Read about mapping to model elements on
“Resolve Assessment Parameter Symbols” on page 3-94. The data type of the selected element from
the bus or multidimensional signal should always be a supported type, and must be the same data
type as other operands in the assessment condition.

Define Variables in the Assessment Callback Section
The Assessment Callback section allows you to define variables that you can use in logical and
temporal assessment conditions and expressions. You can define variables the same way you do in the
MATLAB workspace. This callback also has access to predefined variables that contain data from your
test, model, and simulation, such as a signal from a Simulink block. You can define a variable as a
function of this data. These objects are available:

Object Name Description
TestResult The test case result

(sltest.testmanager.TestCaseResult) or
test iteration result
(sltest.testmanager.TestIterationResul
t) created from the simulation.

sltest_simout An array of simulation outputs
(Simulink.SimulationOutput).

sltest_testCase Current test case object
(sltest.testmanager.TestCase).

sltest_bdroot Cell array of models simulated by the test case.
Can be a harness model.

sltest_sut Cell array of systems under test. For a harness,
this array contains the component under test.

 Logical and Temporal Assessment Syntax

3-109

Object Name Description
sltest_isharness Cell array that returns true if sltest_bdroot is

a harness model.
sltest_iterationName Name of current test iteration.

After defining the variables in the callback, you can map the symbols to variables for use in
assessment conditions and expressions. Read about mapping a symbol to an expression on “Resolve
Assessment Parameter Symbols” on page 3-94 for information on how to map symbols to variables.

The variables created in the Assessment Callback section can only be used in conditions and
expressions in the Logical and Temporal Assessments pane. These variables cannot be used in
other areas of the Test Manager. The Assessment Callback is saved as part of the test file.

See Also

More About
• “Assess Temporal Logic by Using Temporal Assessments” on page 3-92
• “Assess Temporal Logic in Multiple Releases” on page 6-87

3 Test Sequences and Assessments

3-110

Observers

• “Access Model Data Wirelessly by Using Observers” on page 4-2
• “Observe Messages” on page 4-13

4

Access Model Data Wirelessly by Using Observers
In this section...
“Observer Reference Block” on page 4-3
“Connect Signals or Other Model Data Using an Observer Port Block” on page 4-4
“Trace Observed Items to Model Signals and Objects” on page 4-6
“Simulate a System Model with an Observer Reference Block” on page 4-6
“Verify Heat Pump Temperature by Using Observers” on page 4-7
“Convert Verification Subsystem to an Observer Reference” on page 4-10
“Observer Considerations and Limitations” on page 4-12

Observers allow you to monitor the dynamic response of your system model while preserving the
system model design and system result integrity. Observers use two types of blocks, Observer
Reference blocks and Observer Port blocks. The Observer Reference block wirelessly links a system
model to an Observer model, which contains verification logic. Inside an Observer model, you use
Observer Port blocks to access data from the system model to drive the verification logic.

The types of Simulink signals and model data you can observe are:

• Continuous-time and Discrete-time signals
• Zero-order hold signals
• Scalar signals

4 Observers

4-2

• Wide signals
• Nonvirtual bus signals
• Messages
• Stateflow local data parameters, except locals, parameters, signals, and other data defined in a

Simulink subsystem inside a Stateflow state.
• Stateflow state self activity, except if that activity is in a Simulink subsystem inside a Stateflow

state.

Observer Reference Block
Observer Reference blocks wirelessly link a system model to an Observer model. Observer Reference
blocks can only be at the top level of a system model and do not have input or output ports. You map
your Simulink signals or other model data to the Observer Port blocks that are contained within the
Observer model. Once you map the Observer Port blocks to a signal or data, you can connect the
ports to the verification subsystem within the Observer model. Running your system model also runs
the linked Observer model.

Wireless access allows you to use observers to monitor your system model without causing changes
to the system. Observers allow you to create a clear differentiation between your system design and
verification subsystems.

Add an Observer Reference Block

The Observer Reference block references a separate verification model that you use to verify your
system model. To add an Observer Reference block to your system model, first, in the Simulink
toolstrip, open Apps and click Simulink Test in the Model Verification, Validation, and Test section.
Click Add Observer Reference in the Tests tab. Alternately, right-click the top level of your
Simulink canvas and select Observers > Add Observer Reference here from the context menu. An
Observer Reference block is added to your system model, and an Observer model is created and
opened. You must save the Observer model in a writable folder on the MATLAB path.

Connect an Existing Observer Model

To connect an Observer Reference block to an Observer model that you have already created, first
save your Observer model in a writable folder on the MATLAB path. Next, right-click on the Observer
Reference block and select Block Parameters (ObserverReference).

 Access Model Data Wirelessly by Using Observers

4-3

Enter the name of the Observer model that you want to connect to your system and select Apply.
When you double-click your Observer Reference block, your Observer model opens in a new window.

Create an Observer Model from Signals or Other Model Data

To create an Observer model that is mapped to a signal line or observable data in your model, select
one or more signals or the data that you want to observe. Then, click Add Observer Reference in
the Tests tab. Alternately, right-click on the signal or data and select Observers, the item type to
observe, and New Observer. Simulink creates an Observer model and adds an Observer Reference
block to your system model.

Connect Signals or Other Model Data Using an Observer Port Block
Each Observer model contains one or more Observer Port blocks. After mapping an Observer Port
block to a model object or signal within a system model, the Observer Port block outputs the same
output as its mapped object or signal. A new Observer Port block shows a line through the signal
symbol, signifying that the block is not mapped to any signal or object.

Access the Manage Observer Dialog Box

To map an Observer Port block to a signal or object in your system model, open the Manage Observer
dialog box using one of these methods:

• In the Tests tab, click Manage Observer.
• Click the gear in the lower-right corner of the Observer Reference block.
• Right-click the Observer Reference block and select Observers > Manage Observer.
• In the Observer model, double-click an Observer Port block.

4 Observers

4-4

Using the Manage Observer dialog box you can:

• Filter and select signals and objects for observation
• Add, remove, or configure Observer Port blocks
• Trace signals and objects between observer ports and models

On the left side of the Manage Observer dialog box is the Observable Area panel. The Observable
Area panel displays the block hierarchy and observable outputs of your model. Observed signals or
objects appear bold in the hierarchy.

The right side of the Manage Observer dialog box shows the Observer panel. The Observer panel
displays the block hierarchy, including Observer ports in the Observer Reference block. An Observer
Port block that is mapped to a signal or object appears bold and displays the signal to which it is
attached. Once the Observer Port is mapped to a signal or object, its block icon updates to show that
the Observer Port is attached to a signal or object.

To view the full path of an observed object, point to an Observer Port block.

If you change the name of an observed signal or object in your system model, the Observer Reference
block updates the name of the output signal from the Observer Port block. If a signal is not named
and does not have a label, the output of the Observer Port block is set to an empty string.

 Access Model Data Wirelessly by Using Observers

4-5

Map an Observer Port Block to a Signal or Object

To map a signal or object to an Observer Port block, open the Manage Observer dialog box. In the
Observable Area panel, select the signal or object that you want to observe. To map the signal or
object to a new Observer Port block, double-click the selected item or click the Add New Observer

Port icon . To map the signal or object to an existing Observer Port block, select the Observer

Port in the Observer panel and click the Reconfigure Observer Port icon . In the Observer model,
you can then connect the output from the Observer Port to a verification subsystem to test your
results.

Trace Observed Items to Model Signals and Objects
You can trace observed items and their observer ports within the Manage Observer dialog box. You
can also trace items between the Manage Observer dialog box and the system model, and between
the system model and the Observer model.

To trace an observed item to its observer port within the Manage Observer dialog box, use one of
these methods:

• Double-click on the ObserverPort item in the Observer panel. The observed item is highlighted in
the Observable Area panel.

• Right-click on the ObserverPort item in the Observer panel and select Show in left panel. The
observed item is highlighted in the Observable Area panel.

To trace an observed item or observer port between the Manage Observer dialog box and the system
model, use one of these methods:

• Right-click on the ObserverPort item in the Observer panel or in the Observable Area panel and
select Show in model. The observed item is highlighted in the model.

• Right-click on the observed signal or object in the system model and select Go to associated
Observer Ports. The associated Observer Ports are highlighted in the Observer model.

To trace an observer port and observed item between the system model and the Observer model, use
one of these methods:

• Right-click on the Observer Port in the Observer model and select Observers > Go to observed
<item type>. The observed signal or object is highlighted in the system model.

• Right-click on the observed signal or object in the system model and select Observers > Go to
associated Observer Ports. The associated Observer Ports are highlighted in the Observer
model.

Simulate a System Model with an Observer Reference Block
The Observer model is used to monitor signals in your system model and check that your system
model is running within specified parameters. With or without an Observer Reference block, your
system model simulation results are the same. The Observer Reference block does not affect the
compilation of your system model.

4 Observers

4-6

Note Both the system model and Observer model must run in normal simulation mode. Both models
can run at fixed-step or variable-step rate, or one model can run at fixed rate and the other at
variable rate. The two models can also use the same or different solvers. See “Choose a Solver”.

Verify Heat Pump Temperature by Using Observers
This example shows how to use an Observer Reference block to wirelessly observe signals and verify
results. In this system, the plant is modeled using Simulink, and the controller is modeled using
Stateflow. The goal of the example is to monitor both the temperature of the heat pump and when the
pump is cooling or heating the room. The direction in which the fan is blowing indicates cooling or
heating. The data name is pump_dir, and it is connected to port 3 in the Stateflow chart.

1 Open the sltestHeatpumpExample model.

cd(fullfile(docroot,'toolbox','sltest','examples'))
open_system('sltestHeatpumpExample')

 Access Model Data Wirelessly by Using Observers

4-7

2 In the Apps tab, click Simulink Test in the Model Verification, Validation and Test section. The
Tests tab opens

3 Create an Observer model to measure the temperature of the pump.

In the Tests tab, click Add Observer Reference. Simulink adds an Observer Reference block to
your system model and creates an Observer model called
sltestHeatpumpExample_Observer1.

4 Add and map an Observer Port block.

4 Observers

4-8

Open the Plant subsystem and right-click the signal T. Select Observers > Observe selected
signals > sltestHeatpumpExample/Observer (sltestHeatpumpExample_Observer1). The
Observer model adds an Observer Port block that is mapped to signal T. Save the new Observer
model in a writable folder.

5 Add and map another Observer Port block.

In the Observer model, in the Tests tab, click Add Observer Port. Double-click the new
Observer Port to open the Manage Observer dialog box. In the Observer panel, the second
Observer Port, ObserverPort1, is listed below the first port.

To map ObserverPort1 to the Simulink data pump_dir, click ObserverPort1. In the
Observable Area panel, expand Controller and controller_chart, and select Outport3.

Click the Reconfigure icon . The ObserverPort1 name updates to ObserverPort1
(controller_chart:3).

The Observer Port blocks are in the Observer model and are now mapped and ready to be
connected to scopes or a verification subsystem.

 Access Model Data Wirelessly by Using Observers

4-9

Convert Verification Subsystem to an Observer Reference
Converting a Verification Subsystem to an Observer Reference block is a way to declutter a system
model. Select the subsystem to convert and, in the Tests tab, click Send to Observer. Alternately,
right-click the verification subsystem and select Observers > Move selected block to Observer >
New Observer. This operation cannot be undone.

This model contains the Verification Subsystem, Safety Properties.

By converting the Safety Properties Verification Subsystem to an Observer Reference block, you
remove the signals that link the verification subsystem to the system model while preserving the
ability to test the integrity of the system.

4 Observers

4-10

The two signals, throt and output1, are automatically mapped to two Observer Port blocks in the
Observer model, sltestBasicCruiseControlHarnessModel_Observer1.

 Access Model Data Wirelessly by Using Observers

4-11

Observer Considerations and Limitations
Model Simulation

An Observer model does not simulate if:

• The Observer model contains root-level Inport or Outport blocks.
• The Observer model is a library or subsystem reference model.

Observer Reference Blocks

Observer Reference blocks are ignored during simulation if:

• You use any simulation mode other than normal mode (for example, accelerator, SIL/PIL).
• You are generating code.
• The Observer Reference block is in a model reference hierarchy. Observer Reference blocks are

supported only at the root of the top model.
• The Observer Reference block is in an Observer model. Recursion of Observer models is not

supported.

Data Export and Output

• Logging signals or data store memory and saving final operating points are supported for
Observers. All other data export options, such as time, state, output, final state, and save to file,
are not supported.

• To Workspace and Dashboard blocks in Observers are not supported and do not produce output.

Mismatched Settings Between the Observer and Design Model

When these settings in the Observer model differ from the settings in the design model, the design
model settings are used and the Observer model settings are ignored.

• Data import or export settings
• Coverage settings
• Solver stop time

See Also
Observer Port | Observer Reference

More About
• “Observe Messages” on page 4-13

4 Observers

4-12

Observe Messages
Simulink uses messages to communicate between model components. When your model includes one
or more message signals, you can create an Observer model to observe the message data. When you
create the Observer model, it creates metadata associated with the message. You can test the
message semantics and verify the message properties by using both the message data and metadata.

Message Bus Elements
When you create an Observer for a message signal, the Observer model automatically includes an
Observer Port block and a Bus Selector block. The bus has two elements:

• OrigPayload — The message data being observed.
• Metadata with these elements:

• sltestEventMetadata.Message.id — ID of message being observed, returned as an
int32 integer.

• sltestEventMetadata.Message.order — Order of message action in the simulation,
returned as an int32 integer.

• sltestEventMetadata.Message.eventType — The event type, returned as
slTestEventType object. Valid values are MessageArrival, MessageDeparture,
MessageDrop, and Invalid.

• sltestEventMetadata.Message.time — Simulation time when the message was sent,
received, or dropped, returned as a double.

Add a Message Observer
To add an observer for messages:

1 In the model that has one or more blocks that output messages, right-click the output message
signal to observe.

Note Messages from blocks with asynchronous sample times are supported only for SimEvents®

blocks that generate their own sample times.
2 Select Observers > Observe selected signals > New Observer to create an Observer model

for the message signal. An Observer Reference block is added to the main model and an
Observer model is created.

The new Observer model contains an Observer Port block and Bus Selector block. The Bus
Selector block has two outputs, OrigPayload and Metadata. You can use the default settings in
the Observer Port block to observe the outputs from the bus.

 Observe Messages

4-13

3 Connect the outputs from the bus to a block, such as a Test Assessment block or a Stateflow
chart, to specify the logic to analyze or verify the message data or metadata.

Observe a Message Signal
Open a model that has a block with message output. For this example, open the Overflow model,
which contains an Observer model.

open_system('Overflow')

In this model, the Sine Wave2 block sends data every 0.1 seconds, but the Receive2 block receives
data only every 0.5 seconds. Because the Queue2 FIFO block holds a maximum of three messages,
an overflow occurs and some messages are dropped from the queue.

The Observer model was set up by selecting the message signals, right-clicking on one of them, and
selecting Observers > Observe selected signals > New Observer. The Observer block, which is an
Observer Reference block, was automatically added to the main model.

Open the Observer model by double-clicking the Observer block in the main model, or by using this
command:

open_system('Overflow_Observer_1')

4 Observers

4-14

The Observer model contains two Observer Port blocks, Send and Receive, which correspond to the
signals selected in the main model. Each of these blocks is connected to a Bus Selector block with
two outputs. The OrigPayload output is the message data being observed and the Metadata output
contains the message ID, order of the message in the simulation, the message event type, and the
simulation time of the message.

The bus signal outputs connect to two Stateflow charts, which analyze the message data.

The chart for the messages from the Receive Observer port block contains logic that verifes that the
message data and metadata are not corrupted due to messages being dropped because of Queue
block overflows.

The chart logic verifies that:

• Sine wave data is in the expected range, which is between 0 and 1
• The order of the messages and simulation time increments and that each order value is unique
• Message event type is a valid type

 Observe Messages

4-15

See Also
Observer Port | Observer Reference

More About
• “Messages”
• “Simulink Messages Overview”
• “Access Model Data Wirelessly by Using Observers” on page 4-2

4 Observers

4-16

Test Harness Software- and Processor-
in-the-Loop

• “SIL Verification for a Subsystem” on page 5-2
• “Use SIL/PIL to Verify Generated Code from an Earlier Release” on page 5-6
• “Code Generation Verification Workflow with Simulink Test” on page 5-14
• “Import Test Cases for Equivalence Testing” on page 5-19
• “Test Integrated Code” on page 5-28

5

SIL Verification for a Subsystem
In this section...
“Create a SIL Verification Harness for a Controller” on page 5-2
“Configure and Simulate a SIL Verification Harness” on page 5-4
“Compare the SIL Block and Model Controller Outputs” on page 5-4

This example shows subsystem verification by ensuring the output of software-in-the-loop (SIL) code
matches that of the model subsystem. You generate a SIL verification harness, collect simulation
results, and compare the results using the simulation data inspector. You can apply a similar process
for processor-in-the-loop (PIL) verification.

With SIL simulation, you can verify the behavior of production source code on your host computer.
With PIL simulation, you can verify the compiled object code that you intend to deploy in production.
You can run the PIL object code on real target hardware or on an instruction set simulator.

If you have an Embedded Coder license, you can create a test harness in SIL or PIL mode for model
verification. You can compare the SIL or PIL block results with the model results and collect metrics,
including execution time and model code coverage. You cannot collect coverage on the SIL or PIL
blocks. Using the test harness to perform SIL and PIL verification, you can:

• Manage the harness with your model. Generating the test harness generates the SIL block. The
test harness is associated with the component under verification. You can save the test harness
with the main model.

• Use built-in tools for these test-design-test workflows:

• Checking the SIL or PIL block equivalence
• Updating the SIL or PIL block to the latest model design

• View and compare logged data and signals using the Test Manager and Simulation Data Inspector.

When you create an equivalence test that compares normal and SIL or PIL simulation modes, a
separate test harness is used to test each mode. However, if you are equivalence testing an atomic
subsystem or Model block, a single test harness can be used for both the normal and SIL or PIL
simulations. For information about when the a single harness is used for atomic subsystem
equivalence tests, see “Generate Tests and Test Harnesses for a Component or Model” on page 6-26.

This example models a closed-loop controller-plant system. The controller regulates the plant output.

Create a SIL Verification Harness for a Controller
Create a SIL verification harness using data that you log from a closed-loop controller-plant system.
The controller subsystem regulates the plant output. You need an Embedded Coder license for this
example. Another way to create a SIL harness is with the Create Test for Model Component Wizard
(see “Generate Tests and Test Harnesses for a Component or Model” on page 6-26 and “Create and
Run a Back-to-Back Test” on page 6-43).

1 Open the example model by entering

rtwdemo_sil_block

at the MATLAB command prompt,

5 Test Harness Software- and Processor-in-the-Loop

5-2

2 Save a copy of the model using the name controller_model in a new folder, in a writable
location on the MATLAB path.

3 Enable signal logging for the model. At the command prompt, enter

set_param(bdroot,'SignalLogging','on','SignalLoggingName',...
'SIL_signals','SignalLoggingSaveFormat','Dataset')

4 Right-click the signal into Controller port In1, and select Properties. In the Signal Properties
dialog box, for the Signal name, enter controller_model_input. Select Log signal data
and click OK.

5 Right-click the signal out of Controller port Out1, and select Properties. In the Signal
Properties dialog box, for the Signal name, enter controller_model_output. Select Log
signal data and click OK.

6 Simulate the model.
7 Get the logged signals from the simulation output into the workspace. At the command prompt,

enter

out_data = out.get('SIL_signals');
control_in1 = out_data.get('controller_model_input');
control_out1 = out_data.get('controller_model_output');

8 Create the software-in-the-loop test harness. Right-click the Controller subsystem and select Test
Harness > Create Test Harness (Controller).

9 Set the harness properties:

• Name: SIL_harness
• Sources and Sinks: Inport and Outport
• Select Open harness after creation

 SIL Verification for a Subsystem

5-3

• Advanced Properties – Verification Mode: Software-in-the-loop (SIL)

Click OK. The resulting test harness has a SIL block.

Configure and Simulate a SIL Verification Harness
Configure and simulate a SIL verification harness for a controller subsystem.

1 Configure the test harness to import the logged controller input values. From the top level of the
test harness, in the model Configuration Parameters dialog box, in the Data Import/Export
pane, select Input. Enter control_in1.Values as the input and click OK.

2 Enable signal logging for the test harness. At the command prompt, enter

set_param('SIL_harness','SignalLogging','on','SignalLoggingName',...
'harness_signals','SignalLoggingSaveFormat','Dataset')

3 Right-click the output signal of the SIL block and select Properties. In the Signal Properties
dialog box, for the Signal name, enter SIL_block_out. Select Log signal data and click OK.

4 Simulate the harness.

Compare the SIL Block and Model Controller Outputs
Compare the outputs for a verification harness and a controller subsystem.

1 In the test harness model, in the Review Results section, click Data Inspector to open the
Simulation Data Inspector.

2 In the Simulation Data Inspector, click Import. In the Import dialog box.

• Set Import from to: Base workspace.
• Set Import to to: New Run.
• Under Data to import, select Signal Name to import data from all sources.

3 Click Import.
4 Select the SIL_block_out and controller_model_out signals in the Runs pane of the data

inspector window.

The chart displays the two signals, which overlap. This result suggests equivalence for the SIL
code. You can plot signal differences using the Compare tab in SDI, and perform more detailed
analyses for verification. For more information, see “Compare Simulation Data”.

5 Test Harness Software- and Processor-in-the-Loop

5-4

5 Close the test harness window. You return to the main model. The badge on the Controller
block indicates that the SIL harness is associated with the subsystem.

See Also

More About
• “Create and Run a Back-to-Back Test” on page 6-43
• “Generate Tests and Test Harnesses for a Component or Model” on page 6-26
• “Configure and Run SIL Simulation” (Embedded Coder)
• “Use SIL/PIL to Verify Generated Code from an Earlier Release” on page 5-6
• “Generate Subsystem Code as Separate Function and Files” (Simulink Coder)

 SIL Verification for a Subsystem

5-5

Use SIL/PIL to Verify Generated Code from an Earlier Release
For an atomic subsystem, you can use SIL/PIL simulation in the current release to verify code that
was generated for that subsystem in a previous release. You do not have to regenerate the code,
which saves test harness generation time. You cannot reuse generated code for test harnesses for
whole models or Model blocks.

Note You must have an Embedded Coder license to reuse generated code from an earlier release.

Reuse Generated Code
In an earlier release, if you created a test harness that generated code and verified it using SIL/PIL,
you can reuse that code, rather than regenerating it, in the current release. To reuse generated code,
you must know the location of the folder that contains the code. The steps for reusing generated code
and verifying it using SIL/PIL are:

1 Right-click an atomic subsystem in your model and select Test Harness > Create for
'<subsystem_name>'.

2 In the Advanced Properties tab of the Create Test Harness dialog box:

• Set Select Verification Mode to Software-in-the-Loop (SIL) or Processor-in-the-
Loop (PIL).

• Select Use generated code to create SIL/PIL block.
• In the Build folder text box, enter the full path to the folder that contains the previously

generated code.
3 Click OK to create the test harness using the generated code.
4 Create another normal or SIL/PIL mode test harness for the model that does not use generated

code.
5 Create a test case and run the test.
6 Analyze the test results and verify that the results match the results produced by the same code

in the earlier release.

To use previously generated code verified using a SIL/PIL subsystem programmatically, use the
ExistingBuildFolder property of sltest.harness.create or sltest.harness.set to
specify the location of the generated code.

SIL Verification of a Subsystem using Code Generated from an Earlier
Release
This example shows how to use code that was generated in a previous release to verify that the model
in the current release continues to work as expected. In the current release you can create a test
harness using the previously generated code, rather than having to regenerate it.

The model in this example is sldemo_fuelsys_ex, which represents a fuel control system for a
gasoline engine. The system under test is the fuel_rate_control subsystem. A normal mode
simulation in the current release is compared to a SIL mode simulation from an earlier release.

5 Test Harness Software- and Processor-in-the-Loop

5-6

Open the Fuel Control System Model

sldemo_fuelsys_ex

Create the Normal Test Harness and Select the Signal to Log

1. Right-click the fuel_rate_control subsystem and select Test Harness > Create for
'fuel_rate_control'. The Create Test Harness dialog box opens.

2. Change the Name of the harness to sldemo_fuelsys_harness_normal and click OK to create
the normal mode harness.

 Use SIL/PIL to Verify Generated Code from an Earlier Release

5-7

3. Select the signal exiting the subsystem in the test harness. Pause on the ellipsis to open the action
bar and select Enable Data Logging.

4. Close the sldemo_fuelsys_harness_normal harness. You do not need to explicitly save the
harness.

Create the SIL Test Harness and Select the Signal to Log

1. Right-click the fuel_rate_control subsystem again and select Test Harness > Create for
'fuel_rate_control' to open the Create Test Harness dialog box.

2. Change the Name of the harness to sldemo_fuelsys_harness_sil.

3. On the Advanced Properties tab, set the harness as a SIL harness that verified code generated in
an earlier release.

1 Change the Verification Mode to Software-in-the-Loop (SIL).
2 Select Use existing generated code to create SIL/PIL block.
3 In Build folder, enter fuel_rate_control_ert_rtw, which is the name of the folder that

contains the code verified using the SIL subsystem in the earlier release.

5 Test Harness Software- and Processor-in-the-Loop

5-8

4. Click OK to create the SIL harness.

 Use SIL/PIL to Verify Generated Code from an Earlier Release

5-9

5. Select the signal exiting the subsystem in the test harness. Pause on the ellipsis to open the action
bar and select Enable Data Logging.

Create an Equivalence Test Case

1. Use sltestmgr to open the Test Manager.

2. Click New > Test File. Right-click on the test file and change its name to SIL reuse.

3. Delete New Test Case 1.

4. Highlight New Test Suite 1 and click New > Equivalence Test.

5. Change the name of New Test Case 1 to SIL equivalence test case.

6. In the System Under Test section for Simulation 1,

1 Set the Model to sldemo_fuelsys.
2 Under Test Harness > Harness, select sldemo_fuelsys_harness_normal.
3 Under Simulation Settings Overrides, select Stop Time and set it to 10.

5 Test Harness Software- and Processor-in-the-Loop

5-10

7. For Simulation 2,

1 Set the Model to sldemo_fuelsys.
2 Under Test Harness > Harness, select sldemo_fuelsys_harness_sil.
3 Under Simulation Settings Overrides, leave Release as Current. Set Stop Time and set it to

10.

Specify the Harness Inputs

For both simulations, in the Inputs sections, click Add and, in the Add Input dialog box, in the File
field, enter harnessInputs.mat. Click Map Inputs and then click Add to set up the inputs.

 Use SIL/PIL to Verify Generated Code from an Earlier Release

5-11

Run the Test and View the Output and Results

Click Run to run the equivalence test. In the Results and Artifacts pane, expand Equivalence
Criteria Result to view the output.

The upper plot shows the output of both test harnesses. The lower plot shows that the difference
between fuel_rate_control:1 (Baseline) and fuel_rate_control:1 (Sim Output) is zero. This
difference means that the two results plots match exactly. This matching indicates that the code

5 Test Harness Software- and Processor-in-the-Loop

5-12

verified using SIL from the earlier release and the code generated in the current release produce the
same results.

See Also
sltest.harness.create | sltest.harness.set | crossReleaseImport

More About
• “Create Test Harnesses and Select Properties” on page 2-12
• “SIL Verification for a Subsystem” on page 5-2

 Use SIL/PIL to Verify Generated Code from an Earlier Release

5-13

Code Generation Verification Workflow with Simulink Test
Perform code generation verification for a model. Copyright 2015 The MathWorks, Inc.

This example shows how to perform code generation verification (CGV) for a model using test
harnesses, Test Sequence blocks and the test manager. Switch to a directory with write permissions.

mdl = 'sltestFuelRateControlExample';
open_system(mdl);

Description of the Model

This example uses a model of a fuel-rate controller for a gasoline engine. The controller uses four
sensors from the system to determine the proper fuel rate. The four sensors used from the system are
throttle angle, speed, EGO and manifold absolute pressure [MAP].

The model uses three subsystems to calculate the fuel rate using the sensor inputs: control logic,
airflow calc, and fuel_calc. The core control logic is implemented in the Stateflow® chart
named control_logic. The control logic handles single sensor failures and engine overspeed
protection. If a single sensor fails, operation continues but the air/fuel mixture is richer to allow
smoother running at the cost of higher emissions. If more than one sensor has failed, the engine shuts
down as a safety measure, since the air/fuel ratio cannot be controlled reliably.

The model estimates the airflow rate and multiplies the estimate by the reciprocal of the desired ratio
to give the fuel rate.

Opening the Test Harness

A Test Harness named fuel_rate_control_cgv has been created for the entire model. The
harness can be opened by clicking on the perspectives pullout icon in the bottom-right corner of the

5 Test Harness Software- and Processor-in-the-Loop

5-14

model canvas and choosing the fuel_rate_control_cgv thumbnail. Ensure that the top level of
the model is in view before you click on the icon. Alternately, the harness can be opened using the
following API:

sltest.harness.open(mdl,'fuel_rate_control_cgv');

 Code Generation Verification Workflow with Simulink Test

5-15

Modeling the Plant

The test harness has been modeled as a closed-loop test with a Test Sequence block to drive fuel-rate
controller. The computed fuel_rate from the output of the controller is used to drive a model of the
gasoline engine. The fuel rate combines with the actual air flow in the Engine Gas Dynamics
subsystem to determine the resulting mixture ratio as sensed at the exhaust. Feedback from the
oxygen sensor to the Test Sequence block provides a closed-loop adjustment of the rate estimation in
order to maintain the ideal mixture ratio.

5 Test Harness Software- and Processor-in-the-Loop

5-16

Notice that the plant has been modeled in the test harness instead of the main model. The main
model is free of extraneous clutter so that code can be easily built for an ECU with minimal changes
to the model.

Modeling Sensor Failures

The Test Sequence block named Sequence Sensor Failures models various sensor failure and
engine overspeed scenarios. It accepts feedback from the plant and drives the controller with sensor
data. This modeling pattern allows the Test Sequence block to control the feedback signals received
by the Controller block and function as a canvas for authoring test cases. Open the Test Sequence
block to see the modeled test scenarios.

open_system('fuel_rate_control_cgv/Sequence Sensor Failures');

Test Scenarios

For the first 10 seconds of simulation, the test is in stabilization mode, where the closed loop inputs
from the plant is passed through to the controller. The throttle and speed inputs are set to nominal
values that are within the normal operating envelope of the controller. The Stabilize_Engine step
models this state.

The Test then steps through the following modes:

1 Test_Overspeed: The throttle is ramped from 30 to 700
2 Reset_To_Normal_Speed: The throttle is ramped down to 400
3 Test_EGO_Fault: Simulate failure for 3 sec, then return to normal state
4 Test_Throttle_Fault: Simulate failure for 3 sec, then return to normal state
5 Test_Speed_Fault: Simulate failure for 3 sec, then return to normal state
6 Test_Map_Fault: Simulate failure for 3 sec, then return to normal state
7 Test_Multi_Fault: Simulate MAP and EGO failure for 3 sec
8 Reset_MAP: Normalize MAP sensor, and simulate just EGO failure for 3 sec
9 Reset_To_Normal: Terminate the test

Test Assessments

The Test Sequence block Assess Controller verifies the controller output for the various test
cases modeled by the Sequence Sensor Failures block. The following assessments are modeled:

1 Assert that the fueling mode is in Warmup mode for the first 4.8 seconds
2 Assert that fueling mode switches to Overspeed mode when the actual speed exceeds 628
3 Assert that the fueling mode is not in Single_Failure mode when multiple sensors have failed.

open_system('fuel_rate_control_cgv/Assess Controller');

Running a Simulation

Simulate the test harness by clicking Play in the toolstrip and observe the fuel_rate and air-fuel ratio
signals in the scope. Alternately, run the following command: sim('fuel_rate_control_cgv')

Notice that no assertions trigger during the simulation, which indicate that all assessments modeled
in Assess Controller pass.

 Code Generation Verification Workflow with Simulink Test

5-17

Configuring a back-to-back Test in the Test Manager

As part of code generation verification (CGV) for the controller system, it is important to assert that
the functional behavior of the controller is same during normal and software-in-the-loop (SIL)
simulation modes. The test manager is used to perform this verification.

Use the function sltestmgr to open the test manager and load the example test file using the
function:
sltest.testmanager.TestFile('sltestFuelRateControlComparisonTestSuite.mldatx'
)

Modeling the Test Case

The equivalence test has been configured in the test manager so that the controller is simulated in
normal and SIL mode and the numerical results are compared between these two runs. Explore the
structure of the test case by clicking on different nodes of the test hierarchy in the Test Browser.

Running the Test Case

Run the test in the test manager using the function sltest.testmanager.run.

Alternately, In the test manager, select the CGV Test1 node in the Test Browser pane and click Run
in the toolstrip. The pass/fail result is available in the Results and Artifacts pane.

Creating the Report

A report can then be generated to view the result of the equivalence test. Use the following
commands to generate the report. You can also launch the report after creation using the API with
the LaunchReport option set to true.

sltest.testmanager.report(cgvresult,'cgvresult.zip','IncludeTestResults',int32(0));

close_system(mdl, 0);
clear mdl;

5 Test Harness Software- and Processor-in-the-Loop

5-18

Import Test Cases for Equivalence Testing
You can use the SIL/PIL Manager app in Embedded Coder to export test cases to the Test Manager.
By using the app to export software-in-the-loop (SIL) or processor-in-the-loop (PIL) test cases, you do
not have to write complicated test scripts for back-to-back testing.

Note You need both Simulink Test and Embedded Coder to use this feature.

Using Export to Test Manager in the SIL/PIL Manager app in Automated Verification mode
exports a test case with two simulations, each in a different simulation mode. For back-to-back
testing, you usually use Normal mode and SIL mode or Normal mode and PIL mode. When you export
from the app, the Test Manager opens with the new equivalence test case in the Test Browser pane. If
you export to a new test file, the Test Browser opens with a new test file and a new test suite for the
test case. The test case includes a panel for each simulation (SIMULATION 1 and SIMULATION 2).
See SIL/PIL Manager (Embedded Coder) and “SIL/PIL Manager Verification Workflow” (Embedded
Coder) for information on how to use the app to export a test case.

Settings for Test Case Simulations
The System Under Test in the SIL/PIL Manager app determines the settings for the test case
simulations in the Test Manager. These settings for each type of system under test are described for
exporting a test case that includes a SIL mode simulation. For a test that includes a PIL mode
simulation, the settings are the same for each type of system under test.

• “Top-Level Model” on page 5-19
• “Model Block in SIL/PIL Mode” on page 5-20
• “Model Block or Reusable Library Subsystem in a Test Harness” on page 5-21

Top-Level Model
When the system under test is a Top model, the exported test case tests the entire model. The Test
Harness field in Test Manager is blank.

Before exporting the test case, these settings are in the SIL/PIL Manager app.

System Under Test Top model
Simulation Mode Normal
SIL/PIL Mode Software-in-the-Loop (SIL)

After exporting the test case, these settings are in the Test Manager for SIMULATION 1.

Property Setting Location in Test Manager
Model Top model SIMULATION 1 > SYSTEM

UNDER TEST
Simulation mode Normal SIMULATION 1 > SYSTEM

UNDER TEST > SIMULATION
SETTING OVERRIDES

 Import Test Cases for Equivalence Testing

5-19

Property Setting Location in Test Manager
Override model blocks in
SIL/PIL to normal mode

Selected

To run the simulation in Normal
mode, model blocks set to
SIL/PIL mode are overridden.

SIMULATION 1 > SYSTEM
UNDER TEST > SIMULATION
SETTING OVERRIDES

After exporting the test case, these settings are in the Test Manager for SIMULATION 2.

Property Setting Location in Test Manager
Model Top model SIMULATION 2 > SYSTEM

UNDER TEST
Simulation mode Software-in-the-Loop

(SIL)
SIMULATION 2 > SYSTEM
UNDER TEST > SIMULATION
SETTING OVERRIDES

Override model blocks in
SIL/PIL to normal mode

Not selected

The model blocks set to SIL or
PIL mode run in SIL or PIL
mode, respectively.

SIMULATION 2 > SYSTEM
UNDER TEST > SIMULATION
SETTING OVERRIDES

Model Block in SIL/PIL Mode
When the system under test is Model blocks in SIL/PIL mode, the exported test case is a Model
block in SIL or PIL simulation mode. The Test Harness field in Test Manager is blank.

Before exporting the test case, these settings are in the SIL/PIL Manager app.

System Under Test Model blocks in SIL/PIL mode
Top Model Mode Normal

After exporting the test case, these settings are in the Test Manager for SIMULATION 1.

Property Setting Location in Test Manager
Model Top model SIMULATION 1 > SYSTEM

UNDER TEST
Simulation mode Normal SIMULATION 1 > SYSTEM

UNDER TEST > SIMULATION
SETTING OVERRIDES

Override model blocks in
SIL/PIL to normal mode

Selected

To run the simulation in Normal
mode, model blocks set to
SIL/PIL mode are overridden.

SIMULATION 1 > SYSTEM
UNDER TEST > SIMULATION
SETTING OVERRIDES

After exporting the test case, these settings are in the Test Manager for SIMULATION 2.

5 Test Harness Software- and Processor-in-the-Loop

5-20

Property Setting Location in Test Manager
Model Top model SIMULATION 2 > SYSTEM

UNDER TEST
Simulation mode Normal

The system under test runs in
SIL or PIL mode as set in the
SIL/PIL Manager app. Other
blocks run in Normal mode.

SIMULATION 2 > SYSTEM
UNDER TEST > SIMULATION
SETTING OVERRIDES

Override model blocks in
SIL/PIL to normal mode

Not selected

The model blocks set to SIL or
PIL mode run in SIL or PIL
mode, respectively.

SIMULATION 2 > SYSTEM
UNDER TEST > SIMULATION
SETTING OVERRIDES

Model Block or Reusable Library Subsystem in a Test Harness
When the system under test is a Model block or a reusable library subsystem in a test harness, the
exported test case is that block or subsystem in SIL or PIL simulation mode. Use the SIL/PIL Manager
app from within the test harness.

Before exporting the test case, these settings are in the SIL/PIL Manager app.

System Under Test Name of Model block or reusable library
subsystem in the test harness. This field is not
editable because you cannot change an entire
harness to SIL/PIL mode.

Simulation Mode Normal
SIL/PIL Mode Software-in-the-Loop (SIL)

After exporting the test case, these settings are in the Test Manager for SIMULATION 1.

Property Setting Location in Test Manager
Model Model block name SIMULATION 1 > SYSTEM

UNDER TEST
Harness Harness name SIMULATION 1 > SYSTEM

UNDER TEST > TEST
HARNESS

Simulation mode Normal SIMULATION 1 > SYSTEM
UNDER TEST > SIMULATION
SETTING OVERRIDES

Override model blocks in
SIL/PIL to normal mode

Selected

To run the simulation in Normal
mode, Model blocks set to
SIL/PIL mode are overridden.

SIMULATION 1 > SYSTEM
UNDER TEST > SIMULATION
SETTING OVERRIDES

After exporting the test case, these settings are in the Test Manager for SIMULATION 2.

 Import Test Cases for Equivalence Testing

5-21

Property Setting Location in Test Manager
Model Model block name SIMULATION 2 > SYSTEM

UNDER TEST
Harness Harness name SIMULATION 2 > SYSTEM

UNDER TEST > TEST
HARNESS

Simulation mode Software-in-the-Loop
(SIL)

SIMULATION 2 > SYSTEM
UNDER TEST > SIMULATION
SETTING OVERRIDES

Override model blocks in
SIL/PIL to normal mode

Not selected

The Model blocks set to SIL or
PIL mode run in SIL or PIL
mode, respectively.

SIMULATION 2 > SYSTEM
UNDER TEST > SIMULATION
SETTING OVERRIDES

Back-to-Back Testing a Model Using the SIL/PIL Manager App
This example shows how to perform back-to-back testing with a test case exported from the
Embedded Coder SIL/PIL Manager app. The test case compares a model simulated in Normal mode
and in Software-in-the-Loop (SIL) mode.

1 Open the rtwdemo_mdlreftop model.

open_system('rtwdemo_mdlreftop')

Note Steps 2 through 4 apply specifically to this rtwdemo_mdlreftop model. These steps
might not be needed for other models.

2 For this model, click Signal Table in the Simulation tab. Select Test Point and Log data for the
CounterA, CounterB, and CounterC signals.

5 Test Harness Software- and Processor-in-the-Loop

5-22

3 Right-click in the model and select Model Configuration Parameters. In the Configuration
Parameters dialog box,

• In Data Import/Export, set the Format to Dataset.
• In Code Generation > Interface, select signals in the Generate C API for section.

Click OK.
4 Right-click on the Model blocks and select Open as Top Model. In the Configuration Parameters

dialog box, set the same items as in Step 3.
5 Expand the Apps tab in the model window and click SIL/PIL Manager under Code Verification,

Validation, and Test.

6 In the SIL/PIL Manager toolstrip, if they are not already selected, select

• Automated Verification
• System Under Test — Top Model
• Simulation Mode — Normal
• SIL/PIL Mode — Software-in-the-Loop (SIL)

 Import Test Cases for Equivalence Testing

5-23

7 To export the test case, expand Compare Runs and click Export to Test Manager.

8 In the Export SIL/PIL Test Cases dialog box, use the default values and click OK. The Test
Manager opens.

9 In the Test Manager, to see the imported test case and settings, expand
rtwdemo_mdlreftop_TestFile and SIL/PIL Test Suite in the Test Browser.

5 Test Harness Software- and Processor-in-the-Loop

5-24

10 Select the SIL/PIL Equivalence test case. To see the settings for the simulation modes,
expand the SIMULATION 1 and SIMULATION 2 sections. The expanded SIMULATION 1
section is

11 Open the Equivalence Criteria section and click Capture. The model simulates and the section
lists the signals to compare in the test case.

 Import Test Cases for Equivalence Testing

5-25

12 Click Run to run the test case.
13 In the Test Manager, the Results and Artifacts panel shows the pass/fail results. A Code

Generation Report opens in a separate window.
14 Select one or more signals to plot the results.

The plot shows that the outputs from the two simulations are the same.

5 Test Harness Software- and Processor-in-the-Loop

5-26

See Also

More About
• SIL/PIL Manager (Embedded Coder)
• “SIL/PIL Manager Verification Workflow” (Embedded Coder)
• “Code Verification Through Software-in-the-Loop and Processor-in-the-Loop Execution”

(Embedded Coder)

 Import Test Cases for Equivalence Testing

5-27

Test Integrated Code

In this section...
“Test Integrated C Code” on page 5-28
“Test Code in S-Functions” on page 5-28
“S-Function Testing Example” on page 5-28

Test Integrated C Code
If you have a model that integrates C code with a C Caller block, you can test the C code with the Test
Manager and a test harness.

The C Caller block uses configuration parameters to define the custom code. If you change the
configuration parameters, synchronize the parameters between the test harness and the model. For
more information, see “Synchronize Changes Between Test Harness and Model” on page 2-50 and
“Create Test Harnesses and Select Properties” on page 2-12.

• If you change the test harness configuration parameters, you can push the configuration set to the
main model. Click Push Changes, or use sltest.harness.push.

• If you change the main model configuration parameters in the main model, and you want to
update the test harness parameters, the test harness must copy the configuration parameters on
rebuild. You can set this property in two ways:

• When you create the test harness, select Update Configuration Parameters and Model
Workspace data on rebuild. You can also select Rebuild Harness on Open, which rebuilds
every time the harness opens.

• For existing test harnesses, in the harness preview, select one or more of Rebuild Harness >
Rebuild on Open, , or Rebuild Harness without Compiling Model, and Update Harness
Configuration Settings and Model Workspace. The Update Harness Configuration
Settings and Model Workspace option updates the settings every time a rebuild occurs.

Test Code in S-Functions
S-Functions are computer language descriptions of Simulink blocks written in MATLAB, C, C++ or
Fortran. You can test code wrapped in S-Functions using Simulink Test test harnesses. Testing code in
S-Functions can be helpful for regression testing of legacy code and for testing your code in a system
context.

S-Function Testing Example
In this example, you test code in an S-Function block using a test harness. The main model is a
controller-plant model of an air conditioning/heat pump unit. Before you begin, change the default
working folder to one with write permissions.

Note This example works only on a 64–bit Windows® platform.

5 Test Harness Software- and Processor-in-the-Loop

5-28

Set Up the Working Environment

1 Add the example folder to the MATLAB path, and set the example file names.

ep = fullfile(docroot,'toolbox','sltest','examples');
addpath(ep);

md = 'sltestHeatpumpSfunExample.slx'
cb = 'sltestHeatpumpBusPostLoadFcn.mat'
dt = 'PumpDirection.m'

2 Open the model.

open_system(fullfile(ep,md))

In the example model:

• The controller is an S-Function that accepts room temperature and specified temperature inputs.
• The controller output is a bus with signals that control the fan, heat pump, and the direction of the

heat pump (heat or cool).
• The plant accepts the control bus. The heat pump and the fan signals are Boolean, and the heat

pump direction is specified by +1 for cooling and -1 for heating.

The test covers four temperature conditions. Each condition corresponds to one operating state with
fan, pump, and pump direction signal outputs.

Temperature Condition System
State

Fan
Command

Pump
Command

Pump
Direction

|Troom_in - Tset| < DeltaT_fan idle 0 0 0
DeltaT_fan <= |Troom_in - Tset| <
DeltaT_pump

fan only 1 0 0

 Test Integrated Code

5-29

Temperature Condition System
State

Fan
Command

Pump
Command

Pump
Direction

|Troom_in - Tset| >= DeltaT_pump and
Tset < Troom_in

cooling 1 1 -1

|Troom_in - Tset| >= DeltaT_pump and
Tset > Troom_in

heating 1 1 1

Create a Test Case

1 On the Apps tab, under Model Verification, Validation, and Test, click Simulink Test. Then, on
the Tests tab, click Simulink Test Manager.

2 From the Test Manager toolstrip, click New to create a test file. Name and save the test file.
3

In the test case, under System Under Test, click the button to load the current model into
the test case.

Create a Test Harness

1 In the model, right-click the Controller_sfcn subsystem and select Test Harness > Create
for ‘Controller_sfcn’.

2 Set the harness properties.

In the Basic Properties tab:

• Set Name to test_harness_1
• Set Sources and Sinks to None and Scope

3 Click OK to create the test harness.
4 In the test case, under System Under Test, refresh the test harness list and select

test_harness_1 for the Harness.

Add Inputs and Set Simulation Parameters

Create inputs in the test harness, with a constant Tset and a time-varying Troom_in.

1 Connect a Constant block to the Tset input and set the value to 75.
2 Add a Sine Wave block to the harness model to simulate a temperature signal. Connect the Sine

Wave block to the conversion subsystem input Troom_in.
3 Double-click the Sine Wave block and set the parameters:

Parameter Value
Amplitude 15
Bias 75
Frequency 2*pi/3600
Phase (rad) 0
Sample time 1

Select Interpret vector parameters as 1–D.

5 Test Harness Software- and Processor-in-the-Loop

5-30

4 In the Solver pane of the Simulink toolstrip, set Stop time to 3600.

Obtain Baseline Data

1 In the test case, in Simulation Outputs, click Add. Highlight the output bus from the controller
S-Function.

2 In the Signal Selection dialog box, click the Add button.
3 Under Baseline Criteria, click Capture to record a baseline data set from simulating the test

harness. Save the baseline data set to the working folder. The baseline signals appear in the
table.

 Test Integrated Code

5-31

Run the Test Case and View Results

1 Run the test case. The test results appear in the Results and Artifacts pane.
2 Expand the results to view the baseline criteria result. The baseline test passes because the

simulation output is identical to the baseline data.

5 Test Harness Software- and Processor-in-the-Loop

5-32

See Also
sltest.CodeImporter

Related Examples
• “Conduct Unit Testing on Imported Custom Code by Using the Wizardfilename” on page 9-11
• “Import Custom Code for Unit Testing Using API Commands” on page 9-5

 Test Integrated Code

5-33

Test Manager Test Cases

• “Manage Test File Dependencies” on page 6-3
• “Compare Model Output to Baseline Data” on page 6-7
• “Creating Baseline Tests” on page 6-10
• “Batch Equivalence Testing of Multiple Components” on page 6-13
• “Test a Simulation for Run-Time Errors” on page 6-18
• “Automatically Create a Set of Test Cases” on page 6-21
• “Generate Tests and Test Harnesses for a Component or Model” on page 6-26
• “Override Model Parameters in a Test Case” on page 6-33
• “Test Two Simulations for Equivalence” on page 6-37
• “Create and Run a Back-to-Back Test” on page 6-43
• “Testing AUTOSAR Compositions” on page 6-48
• “Automate Testing for Highway Lane Following” on page 6-53
• “Synchronize Tests” on page 6-63
• “Use External Excel or MAT-File Data in Test Cases” on page 6-64
• “Create Data Files for Test Case Input” on page 6-72
• “Capture Simulation Data in a Test Case” on page 6-77
• “Run Tests in Multiple Releases of MATLAB” on page 6-83
• “Examine Test Failures and Modify Baselines” on page 6-91
• “Create and Run Test Cases with Scripts” on page 6-96
• “Test Models Using MATLAB-Based Simulink Tests” on page 6-100
• “Using MATLAB-Based Simulink Tests in the Test Manager” on page 6-105
• “Collect Coverage Using MATLAB-Based Simulink Tests” on page 6-108
• “Test Iterations” on page 6-113
• “Capture Baseline Data from Iterations” on page 6-121
• “Collect Coverage in Tests” on page 6-124
• “Test Coverage for Requirements-Based Testing” on page 6-131
• “Increase Test Coverage for a Model” on page 6-136
• “Run Tests Using Parallel Execution” on page 6-140
• “Set Signal Tolerances” on page 6-142
• “Specify Test Properties in the Test Manager” on page 6-147
• “Preferences” on page 6-160
• “Increase Coverage by Generating Test Inputs” on page 6-161
• “Process Test Results with Custom Scripts” on page 6-165
• “Assess the Damping Ratio of a Flutter Suppression System” on page 6-170
• “Create, Store, and Open MATLAB Figures” on page 6-173

6

• “Test Models Using MATLAB Unit Test” on page 6-176
• “Output Results for Continuous Integration Systems” on page 6-180
• “Parametric Sweep for a Simscape Thermal Model” on page 6-184
• “Projector Controller Testing Using verify and Real-Time Tests” on page 6-190
• “Test Execution Order” on page 6-195
• “Filter Test Execution and Results” on page 6-199

6 Test Manager Test Cases

6-2

Manage Test File Dependencies
In this section...
“Package a Test File Using Projects” on page 6-3
“Find Test File Dependencies and Impact” on page 6-4
“Share a Test File with Dependencies” on page 6-6

You can help track and manage your test file dependencies by creating a project for your test file and
the files it depends on. Examples of test file dependencies include requirements, data files, callbacks,
test harnesses, and custom criteria scripts. Packaging test file dependencies in a project also helps
you share tests with other users.

Package a Test File Using Projects
1 In the Test Browser, right-click the test file.
2 Select Project > Create Project from Test File.

Project opens and identifies the file dependencies of the test file. In this example, the test file
contains a baseline test case that uses a baseline data file.

3 Specify project name, and verify the list of selected file dependencies.
4 Click Create.

 Manage Test File Dependencies

6-3

Find Test File Dependencies and Impact
You can find test file dependencies from the project or from the Test Manager. Your test file must be
saved in a project.

1 From the project, click Analyze

6 Test Manager Test Cases

6-4

or from the Test Manager, right-click the test file. Select Project > Find Dependencies.

Dependencies are color coded in the file dependency graph.

 Manage Test File Dependencies

6-5

If you want to change a model or requirement, you can determine the potential impact of the change
on your tests.

1 In the dependency graph, select the item that could impact your tests.
2 In the Dependency Analyzer toolstrip, in the Impact Analysis section, click Impacted.

If you want to run a test file again, double-click the test file in the graph to open the Test Manager. In
the Test Manager, click Run.

Share a Test File with Dependencies
You can easily share test files that are already saved in a project. If you send the project folder, it
contains the file dependencies for the test file.

See Also

Related Examples
• “What Are Projects?”

6 Test Manager Test Cases

6-6

Compare Model Output to Baseline Data
To test the simulation output of a model against a defined baseline, use a baseline test case. This
example uses the sldemo_absbrake model to compare the simulation output to a baseline captured
from an earlier state of the model.

Create the Test Case
1 Open the model using openExample('sldemo_absbrake').
2 To open the Test Manager from the model, on the Apps tab, under Model Verification, Validation,

and Test, click Simulink Test. Then, on the Tests tab, click Simulink Test Manager.
3 From the Test Manager toolstrip, click New to create a test file. Name and save the test file.

The test file consists of a test suite that contains one baseline test case. They appear in the Test
Browser pane.

4 Right-click the baseline test case in the Test Browser pane, and select Rename. Rename the
test case to Slip Baseline Test.

5
Under System Under Test in the test case, click the Use current model button to load the
sldemo_absbrake model into the test case.

6 To record a baseline from the system under test, under Baseline Criteria, click Capture.
7 In the Capture Baseline dialog box, for the file format, select Excel. Specify a location to save

the baseline to and click Capture.
8 The baseline criteria file and the logged signals appear in the table. Set the Absolute Tolerance

of the Ww signal to 15.

Tip To add or remove columns in the baseline criteria table, click the column selector button .

For more information about tolerances and criteria, see “Set Signal Tolerances” on page 6-142.

Run the Test Case and View Results
1 In the sldemo_absbrake model, set the Desired relative slip constant block to 0.22.
2 In the Test Manager, select the Slip Baseline Test case in the Test Browser pane.
3 On the Test Manager toolstrip, click Run.

In the Results and Artifacts pane, the new test result appears at the top of the table.

 Compare Model Output to Baseline Data

6-7

4 Expand the results until you see the baseline criteria result. Right-click the result and select
Expand All Under.

The signal yout.Ww passes, but the overall baseline test fails because other signal comparisons
specified in the Baseline Criteria section of the test case were not satisfied.

5 To view the yout.Ww signal comparison between the model and the baseline criteria, expand
Baseline Criteria Result and click the option button next to the yout.Ww signal.

The Comparison tab opens and shows the criteria comparisons for the yout.Ww signal and the
tolerance.

6 You can also view signal data from the simulation. Expand Sim Output and select the signals
you want to plot.

6 Test Manager Test Cases

6-8

The Visualize tab opens and plots the simulation output.

7 Reset the path using:

rmpath(fullfile(matlabroot,'examples',...
 'simulink_automotive','main'));

For information on how to export results and generate reports from results, see “Export Test Results”
on page 7-16.

See Also
Test Manager

Related Examples
• “Set Signal Tolerances” on page 6-142
• “Capture Baseline Criteria” on page 6-155
• “Run Tests in Multiple Releases of MATLAB” on page 6-83

 Compare Model Output to Baseline Data

6-9

Creating Baseline Tests
Verify simulation result against a baseline dataset created from a model.

This example shows you how to create baselines tests for a model. The example uses the model
sltestBaselineBasicExample to generate a baseline dataset of expected results by simulating
the model. The baseline test case checks that the simulation results produce the same output as the
baseline dataset, which determines the pass/fail criteria of the test case.

Open the Model and Test Manager

1. Open the model.

mdl = 'sltestBaselineBasicExample';
open_system(mdl);

2. From the model, in the Apps tab, click Simulink Test from the Model Verification, Validation, and
Test section. Then click Test Manager in the Tests tab.

3. Create a new test file using the Test Manager toolstrip.

4. Name the test file, and save it in a writable folder.

Capture Baseline

1. Under System Under Test, for Model, enter sltestBaselineBasicExample. Capture a
baseline for the test case by expanding the Baseline Criteria section and clicking Capture. Save the
file BaselineData in a writable folder.

The test case runs, and baseline data is captured for the root outports.

6 Test Manager Test Cases

6-10

2. Click Run from the toolstrip to execute the test.

Visualize Baseline Test Results

1. After the test completes, expand all rows in the Results and Artifacts pane. The test case passes
because the simulation results match the baseline results.

 Creating Baseline Tests

6-11

2. Select the option button for Out2 under Baseline Criteria Result to visualize the data
comparison.

close_system(mdl, 0);
clear mdl;

6 Test Manager Test Cases

6-12

Batch Equivalence Testing of Multiple Components
This example shows how to create equivalence test cases and test harnesses for multiple components
in batch mode using sltest.testmanager.createTestForComponent. Coverage collection and
report generation are also included in the example.

The sltestCruiseControl model used in this example has Atomic Subsystem blocks, Virtual
Subsystems blocks & Model Reference Blocks .

Note that this example is configured only for Windows machines.

Open the Model

topModel = "sltestCruiseControl";
load_system(topModel);

Generate the Code

The equivalence tests in this example compare normal mode code and generated code. Embedded
Coder is required to generate the code for the model. The model has been configured with
appropriate C code generation and coder mapping settings for Windows 64-bit systems. You can
change these settings, if desired, before generating the code.

slbuild(topModel);

Starting serial model reference code generation build
Checking the status of model reference code generation target for model 'sltestCruiseControlMode' used in 'sltestCruiseControl'
Model reference code generation target (sltestCruiseControlMode.c) for model sltestCruiseControlMode is out of date because sltestCruiseControlMode.c does not exist.
Starting build procedure for: sltestCruiseControlMode
Generating code and artifacts to 'Model specific' folder structure
Generating code into build folder: C:\Users\dschwart\Documents\MATLAB\ExampleManager\dschwart.Bdoc22a.j1841572\simulinktest-ex89766869\slprj\ert\sltestCruiseControlMode
Invoking Target Language Compiler on sltestCruiseControlMode.rtw
Using System Target File: S:\matlab\rtw\c\ert\ert.tlc
 ### Loading TLC function libraries
.......
Initial pass through model to cache user defined code
..
Caching model source code
...
......
Writing header file sltestCruiseControlMode_types.h
Writing header file sltestCruiseControlMode.h
Writing header file rtwtypes.h
.
Writing source file sltestCruiseControlMode.c
Writing header file sltestCruiseControlMode_private.h
TLC code generation complete.
..### Creating HTML report file index.html
Saving binary information cache.
Using toolchain: Microsoft Visual C++ 2017 v15.0 | nmake (64-bit Windows)
Creating 'C:\Users\dschwart\Documents\MATLAB\ExampleManager\dschwart.Bdoc22a.j1841572\simulinktest-ex89766869\slprj\ert\sltestCruiseControlMode\sltestCruiseControlMode.mk' ...
Successful completion of code generation for: sltestCruiseControlMode
Checking the status of model reference code generation target for model 'sltestDriverSwRequest' used in 'sltestCruiseControl'
Model reference code generation target (sltestDriverSwRequest.c) for model sltestDriverSwRequest is out of date because sltestDriverSwRequest.c does not exist.
Starting build procedure for: sltestDriverSwRequest
Generating code and artifacts to 'Model specific' folder structure
Generating code into build folder: C:\Users\dschwart\Documents\MATLAB\ExampleManager\dschwart.Bdoc22a.j1841572\simulinktest-ex89766869\slprj\ert\sltestDriverSwRequest

 Batch Equivalence Testing of Multiple Components

6-13

Invoking Target Language Compiler on sltestDriverSwRequest.rtw
Using System Target File: S:\matlab\rtw\c\ert\ert.tlc
 ### Loading TLC function libraries
.......
Initial pass through model to cache user defined code
..
Caching model source code
...
Writing header file sltestDriverSwRequest_types.h
Writing source file sltestDriverSwRequest.c
Writing header file sltestDriverSwRequest_private.h
Writing header file sltestDriverSwRequest.h
.
TLC code generation complete.
Creating HTML report file index.html
Saving binary information cache.
Using toolchain: Microsoft Visual C++ 2017 v15.0 | nmake (64-bit Windows)
Creating 'C:\Users\dschwart\Documents\MATLAB\ExampleManager\dschwart.Bdoc22a.j1841572\simulinktest-ex89766869\slprj\ert\sltestDriverSwRequest\sltestDriverSwRequest.mk' ...
Successful completion of code generation for: sltestDriverSwRequest
Simulink cache artifacts for 'sltestCruiseControlMode' were created in 'C:\Users\dschwart\Documents\MATLAB\ExampleManager\dschwart.Bdoc22a.j1841572\simulinktest-ex89766869\sltestCruiseControlMode.slxc'.
Simulink cache artifacts for 'sltestDriverSwRequest' were created in 'C:\Users\dschwart\Documents\MATLAB\ExampleManager\dschwart.Bdoc22a.j1841572\simulinktest-ex89766869\sltestDriverSwRequest.slxc'.
Starting build procedure for: sltestCruiseControl
Generating code and artifacts to 'Model specific' folder structure
Generating code into build folder: C:\Users\dschwart\Documents\MATLAB\ExampleManager\dschwart.Bdoc22a.j1841572\simulinktest-ex89766869\sltestCruiseControl_ert_rtw
Invoking Target Language Compiler on sltestCruiseControl.rtw
Using System Target File: S:\matlab\rtw\c\ert\ert.tlc
 ### Loading TLC function libraries
.......
Generating TLC interface API for custom data
.
Initial pass through model to cache user defined code
..
Caching model source code
...
....................
Writing header file sltestCruiseControl_types.h
Writing header file sltestCruiseControl.h
.
Writing source file sltestCruiseControl.c
Writing header file sltestCruiseControl_private.h
Writing source file ert_main.c
TLC code generation complete.
.### Saving binary information cache.
Using toolchain: Microsoft Visual C++ 2017 v15.0 | nmake (64-bit Windows)
Creating 'C:\Users\dschwart\Documents\MATLAB\ExampleManager\dschwart.Bdoc22a.j1841572\simulinktest-ex89766869\sltestCruiseControl_ert_rtw\sltestCruiseControl.mk' ...
Successful completion of code generation for: sltestCruiseControl
Simulink cache artifacts for 'sltestCruiseControl' were created in 'C:\Users\dschwart\Documents\MATLAB\ExampleManager\dschwart.Bdoc22a.j1841572\simulinktest-ex89766869\sltestCruiseControl.slxc'.

Build Summary

Code generation targets built:

Model Action Rebuild Reason
==
sltestCruiseControlMode Code generated sltestCruiseControlMode.c does not exist.
sltestDriverSwRequest Code generated sltestDriverSwRequest.c does not exist.

Top model targets built:

6 Test Manager Test Cases

6-14

Model Action Rebuild Reason
===
sltestCruiseControl Code generated Code generation information file does not exist.

3 of 3 models built (0 models already up to date)
Build duration: 0h 1m 8.244s

Specify the Components to Test

The example tests all of the atomic subsystems that have nonreusable function packaging in the
generated code.

componentsToTest = find_system(topModel,...
 "BlockType","SubSystem",...
 "TreatAsAtomicUnit","on",...
 "RTWSystemCode","Nonreusable function");

To improve traceability of testing artifacts, such as test case and test harness names, customize the
default names of the created harnesses. The names will use the component name instead of the
owning model name.

sltest.harness.setHarnessCreateDefaults("Name","$Component$_Harness");

Create the Test Cases and Test Harnesses in Batch Mode

Use the sltest.testmanager.createTestForComponent API to create multiple test cases and
test harnesses at the same time. Using createTestForComponent, you specify to create a test file
and the test file name. You also specify the top model, components to test, and the test type and
simulations settings. For the test inputs, you specify to use Simulink Design Verifier to automatically
generate the inputs in Microsoft Excel format. If you have other existing inputs, you can add them to
the test cases and test both those inputs and the generated inputs.

[tc, status] = ...
 sltest.testmanager.createTestForComponent(...
 "CreateTestFile",true,...
 "TestFile","myB2BTestsDemoEx.mldatx",...
 "TopModel",topModel,...
 "Component",componentsToTest,...
 "TestType","equivalence",...
 "Simulation1Mode","Normal",...
 "Simulation2Mode","Software-in-the-Loop (SIL)",...
 "SLDVTestGeneration","on",...
 "CreateExcelFile",true);

Test Execution

The createTestForComponent API generated the test file, test harnesses, and test input signals in
the current working directory. Now, save the harnesses attached to the model, and save the test file.

tf = sltest.testmanager.TestFile("myB2BTestsDemoEx.mldatx");
tf.saveToFile;
save_system(topModel);

Enable coverage collection for test file and run the tests.

cov = getCoverageSettings(tf);
cov.RecordCoverage = true;

 Batch Equivalence Testing of Multiple Components

6-15

cov.MetricSettings = "dcmr";
tf.saveToFile;

resultSet = tf.run;
bdclose all;

sltest.testmanager.exportResults(resultSet,"myB2BResults.mldatx");
sltestmgr;

Generate a report with coverage and equivalence test results.

sltest.testmanager.report(...
 resultSet,"myB2BResultsReport.pdf",...
 "IncludeCoverageResult",true,...
 "IncludeSimulationSignalPlots",true,...
 "IncludeComparisonSignalPlots",true,...
 "IncludeTestResults",0,...
 "IncludeSimulationMetadata",true);

Clean Up

close_system(topModel)
sltest.testmanager.clear

6 Test Manager Test Cases

6-16

sltest.testmanager.clearResults
sltest.testmanager.close

See Also
sltest.testmanager.createTestForComponent

 Batch Equivalence Testing of Multiple Components

6-17

Test a Simulation for Run-Time Errors
In this example, use a simulation test case with the sldemo_absbrake model to test for simulation
run-time errors.

Configure the Model
Configure the model to check if the stopping distance exceeds an upper bound.

1 To open the model, type openExample('sldemo_absbrake').
2 Add the Check Static Upper Bound block from the Model Verification library to the model.
3 Connect the Check Static Upper Bound block to the Sd signal.

4 In the Check Static Upper Bound block dialog box, and set Upper bound to 725.

Create the Test Case
1 To open the Test Manager, on the Apps tab, under Model Verification, Validation, and Test, click

Simulink Test. Then, on the Tests tab, click Simulink Test Manager.
2 To create a test file, click New. Name and save the test file.

The new test file consists of a test suite that contains one baseline test case. They appear in the
Test Browser pane.

3 Select New > Simulation Test.

6 Test Manager Test Cases

6-18

4 Right-click the new simulation test case in the Test Browser pane, and select Rename. Rename
the test case to Upper Bound Test.

5
In the test case, under System Under Test, click the Use current model button to assign
the sldemo_absbrake model to the test case.

6 Under Parameter Overrides, click Add to add a parameter set.
7

In the dialog box, click the Refresh button to update the model parameter list.
8 Select the check box next to the workspace variable m. Click OK.
9 Double-click the Override Value and enter 55.

This value overrides the parameter value in the model when the simulation runs.

Note To restore the default value of a parameter, clear the value in the Override Value column
and press Enter.

Run the Test Case
1 In the Test Browser pane, select the Upper Bound Test case.
2 In the Test Manager toolstrip, click Run. The test results appear in the Results and Artifacts

pane.

View the Error
Click on the Upper Bound Test to view the run-time error.

 Test a Simulation for Run-Time Errors

6-19

See Also

More About
• “Run Tests in Multiple Releases of MATLAB” on page 6-83

6 Test Manager Test Cases

6-20

Automatically Create a Set of Test Cases

In this section...
“Creating Test Cases from Model Elements” on page 6-21
“Generating Test Cases from a Model” on page 6-21

Creating Test Cases from Model Elements
You can automatically create a set of test cases and iterations that correspond to blocks and test
harnesses in your model. You specify whether the test cases are baseline, equivalence, or simulation
test cases. To automatically create test cases, your model must contain either or both of the
following:

• One Signal Editor block at the top level of the model. If the block has only one scenario, a test
case is created. If the block has more than one scenario, an iteration is created for each scenario.

• Test harnesses. If a test harness contains one (and only one) Signal Editor block at the top level, a
test case is created for the scenario in the block. If the block has more than one scenario, an
iteration is created for each scenario.

To automatically create test cases or iterations for your model:

1 In the Test Manager, select New > Test File > Test File from Model.
2 In the dialog box, select the model that you want to generate test cases from. The model must be

on the MATLAB path.
3 Select the test case type, and click Create.

Generating Test Cases from a Model
Generate test cases based on model hierarchy.

This example shows how to generate test cases based on the components in your model. This example
uses the model sltestCar, which has been pre-configured with the following:

• Signal Editor block at the top level of the model
• Test harnesses at the top level of the model
• Signal Editor block at the top level of the test harness

Open the Model and Test Manager

Execute the following code to open the model configured with different components such as Signal
Editor scenarios and test harnesses.

Model = 'sltestCar';
open_system(Model);

 Automatically Create a Set of Test Cases

6-21

Open the test manager. Enter sltestmgr in the MATLAB command prompt.

Generate Test Cases From the Model

In the test manager, click the New arrow and select Test File from Model.

6 Test Manager Test Cases

6-22

1 In the New Test File dialog box, click the Use current model button to specify sltestCar as
the Model.

2 Specify the Location of the test file.
3 Select the Baseline from the Test Type dropdown. All test cases generated will be of the test

type specified here.

 Automatically Create a Set of Test Cases

6-23

4 Click Create.

The sltestCar/Inputs test case uses table iterations.

Before you run the test, you must specify the baseline criteria for each generated test case.

close_system(Model, 0);
clear Model;

See Also

More About
• “Synchronize Tests” on page 6-63
• “Specify Test Properties in the Test Manager” on page 6-147
• “Compare Model Output to Baseline Data” on page 6-7

6 Test Manager Test Cases

6-24

• “Test a Simulation for Run-Time Errors” on page 6-18
• “Test Two Simulations for Equivalence” on page 6-37
• “Import Test Cases for Equivalence Testing” on page 5-19
• “Generate Tests and Test Harnesses for a Component or Model” on page 6-26

 Automatically Create a Set of Test Cases

6-25

Generate Tests and Test Harnesses for a Component or Model
In the Test Manager, the Create Test for Component wizard creates an internal test harness and test
case for a model or a component in the model. Components for which you can create test harnesses
include subsystems, Stateflow charts, and Model blocks. For a full list of components supported by
test harnesses, see “Test Harness and Model Relationship” on page 2-2.

In the wizard, you specify:

• The model to test.
• The component to test, if you are not testing a whole model.
• The test inputs.
• The type of test to run on the component.
• Whether to save test data in a MAT-file or Excel®. For more information on using Excel files in the

Test Manager, see “Format Test Case Data in Excel” on page 6-75.

For an example that uses the wizard, see “Create and Run a Back-to-Back Test” on page 6-43.

Open the Create Test for Component Wizard
Before you run the wizard, check your model.

• If you are testing a component, you can select that component in the model before opening the
wizard to automatically fill in the model and component fields.

• If you are testing the code for an atomic subsystem by using an equivalence test that uses
software-in-the-loop (SIL) or processor-in-the-loop (PIL) mode, verify that the subsystem already
has generated code.

• If you are testing the code generated for a reusable library subsystem, before opening the Create
Test for Component wizard, verify that the subsystem has defined function interfaces and that the
library already has generated code. For information on reusable library subsystems, function
interfaces, and generated code, see “Library-Based Code Generation for Reusable Library
Subsystems” (Embedded Coder). You must have an Embedded Coder license to verify generated
code.

To open the Create Test for Component wizard, in the Test Manager select New > Test for Model
Component.

Select Model or Component to Test

6 Test Manager Test Cases

6-26

On the first page of the wizard, click the Use current model button to fill in the Top Model
field.

Then, if you are testing a:

• Whole model, leave the Component field empty.
• Single component and you selected a component in the model before opening the wizard, click the

Use currently selected model component button to fill in the Component field.
Otherwise, enter the name of the component.

• Component in a Model block, you do not need to specify the Model block as the top model. Use the
name of the model that contains the Model block as the Top Model.

• Reusable library subsystem that has a function interface, a Function Interface Settings option
displays. Select the function interface for which you want to create a test.

Reusable libraries contain components and subsystems that can be shared with multiple models.
You can share the code generated by the subsystems if those subsystems are at the top level of the
reusable library and if they have function interfaces. Function interfaces specify the subsystem
input and output block parameter settings.

To test the whole model without creating a test harness, deselect the Create Test Harness for
component check box. If you are testing a specific component in the model, a test harness is created
automatically, and the Create Test Harness for component option does not display.

Note For an export-function model, the test harness creates a Test Sequence block automatically.

Click Next to go to the next page of the wizard.

 Generate Tests and Test Harnesses for a Component or Model

6-27

Set Up Test Inputs

On the Test Inputs page, select how to obtain the test inputs.

• Use component input from the top model as test input — Simulate the model and record the
inputs to the component. Then, use those inputs as the inputs to the created test harness. Use this
option for debugging.

Note If you are testing a subsystem that has function calls, you cannot obtain inputs by
simulating the model because function calls cannot be logged. Use either of the other two options
to obtain the inputs.

• Use Design Verifier to generate test input scenarios — Create test harness inputs to meet
test coverage requirements using Simulink Design Verifier. This option appears only if Simulink
Design Verifier is installed.

Simulate top model and use the recorded component inputs in the analysis — When
coverage in test cases generated from Design Verifier is lower than expected, select this option to
include top model simulation for the Design Verifier analysis.

• Specify inputs in the created harness — After the wizard creates the harness, open the
harness in the Test Manager and manually specify the harness inputs. This option does not appear
if you chose not to create a test harness.

6 Test Manager Test Cases

6-28

Test Method

On the Verification Strategy page, select how to test the component.

• Use component under test output as baseline — Simulate the model and record the outputs
from the components, which are used as the baseline.

• Perform back-to-back testing — Compare the results of running the component in two different
simulation modes. For each simulation, select the mode from the drop-down menu. To conduct SIL
testing on an atomic subsystem or a reusable library subsystem, the subsystem or library that
contains the subsystem must already have generated code.

If you selected Use Design Verifier to generate test input scenarios on the Test Inputs tab,
and you select Simulation2 to Software-in-the-Loop (SIL) or Processor-in-the-Loop
(PIL), the wizard displays the Set Model Coverage Objective as Enhanced MCDC option.
Enhanced MCDC extends MCDC coverage by generating test cases that avoid masking effects
from downstream blocks. See “Enhanced MCDC Coverage in Simulink Design Verifier” (Simulink
Design Verifier) and “Create Back-to-back Tests Using Enhanced MCDC” (Simulink Design
Verifier) .

• Define the verification logic in the created harness — After the wizard creates the harness,
open the harness. Manually specify the verification logic using a Test Sequence or Test
Assessments block in the generated harness. Alternatively, use logical and temporal assessments
or custom criteria in the generated test case. This option does not appear if you are testing a top-
level model and choose not to create a test harness.

 Generate Tests and Test Harnesses for a Component or Model

6-29

Save Test Data

On the Generated Test page, select the format in which to save the test data and specify the file
name for the generated tests.

• Select test harness input source — Select how the inputs generated by the Design Verifier are
applied to the test harness. This option appears only if you select Use Design Verifier to
generate test input scenarios on the Test Inputs tab.

• Inports — Create a test harness with Inport blocks as the source.
• Signal Editor — Create a test harness with the Signal Editor as the source that contains

the input scenarios generated by the Design Verifier.
• Specify the file format — Specify the type of file in which to save data. This option appears only

if you select Inports as the input source.

• Excel — Saves the test inputs, outputs, and parameters to one sheet in an Excel spreadsheet
file. For tests with multiple iterations, each iteration is in a separate sheet. For more
information on using Excel files in the Test Manager, see “Format Test Case Data in Excel” on
page 6-75.

• MAT — Saves inputs and outputs in separate MAT files. For tests that use Simulink Design
Verifier, the wizard saves the inputs and parameters in one file and the outputs in a baseline
file.

• Specify location to save test data — Specify the full path of the file. Alternatively, you can use
the default file name and location, which saves sltest_<model name> in the current working
folder. This option is available only for Excel format files. MAT files are saved to the default
location specified in the model configuration settings.

• Test File Location — Specify the full path where you want to save the generated test files.
Alternatively, you can use the default file name, which is sltest_<model name>_tests. The file

6 Test Manager Test Cases

6-30

is saved in the current working folder. This field appears only if you did not have a test file open in
the Test Manager before you opened the wizard.

If you had a test file open in the Test Manager before you opened the wizard, these options are
displayed instead of Test File Location:

• Add tests to the currently selected test file — The generated tests are added to the test file
that was selected in the Test Browser panel of the Test Manager when you opened the wizard.

• Create a new test file containing the test(s) — A new test file is created for the tests. It
appears in the Test Browser panel of the Test Manager.

Generate the Test Harness and Test Case
Click Done to generate a test harness and test case. A test harness is not created if you are testing a
whole model and deselected Create a Test Harness on the first tab of the wizard.

The Test Manager then opens with the test case in the Test Browser pane and, if a test harness was
created, the test harness name in the Harness field of the System Under Test section. The test case
is named <model name>_Harness<#>.

Note If the model has an existing external harness, the wizard creates an additional external test
harness for the component under test. If no harness exists or if an internal harness exists, the wizard
creates an internal test harness.

If you are testing the code for an atomic subsystem or model block using an equivalence test and, on
the Verification Strategy tab, you set Simulation2 to Software-in-the-Loop (SIL) or
Processor-in-the-Loop (PIL), the wizard creates only one test harness for both the normal and
SIL or PIL simulation modes. For other equivalence tests, the wizard creates two harnesses, one for
each simulation mode. For the following types of subsystems and model configurations, the wizard
creates two test harnesses, even if the subsystem is atomic.

• Virtual subsystems
• Function-call, For Each, If Action, S-Function, Initialize Function, Terminate Function, and Reset

Function subsystems
• Stateflow charts
• Subsystems where the ERTFilePackagingFormat property is set to Compact if the subsystem

code has the PreserveStaticInFcnDecls set to on.
• AUTOSAR
• Subsystems that generate inline code, such as subsystems where the RTWSystemCode property is

not either Nonreusable function or Reusable function).
• Subsystems that contain referenced models, S-Function, Data Store Read, or Data Store Write

blocks

 Generate Tests and Test Harnesses for a Component or Model

6-31

• Subsystems that have virtual buses at their interface
• Subsystems that include LDRA or BullsEye code coverage
• Subsystems that include signal logging

See Also
sltest.testmanager.createTestForComponent

More About
• “Create and Run a Back-to-Back Test” on page 6-43
• “Test Two Simulations for Equivalence” on page 6-37
• “Compare Model Output to Baseline Data” on page 6-7
• “Test a Simulation for Run-Time Errors” on page 6-18
• “Automatically Create a Set of Test Cases” on page 6-21

6 Test Manager Test Cases

6-32

Override Model Parameters in a Test Case
Compare simulation to baseline data using a parameter override and the Test Manager.

This example shows how to override a parameter defined in a model workspace using the Test
Manager, and view its effect on model output compared to a baseline.

Open the Test File

Open the Test Manager.

sltest.testmanager.view

Open the test file.

tf = sltest.testmanager.load('sltestParameterOverridesTest.mldatx');

Overriding a Model Parameter

1. Expand the test suite in the Test Browser pane and select the Test Override test case.

2. Scroll down to the Baseline Criteria section and click Capture.

3. Save the baseline file to writable folder.

4. Expand the Parameter Overrides section in the test case and click Add.

5. In the dialog box, click the Refresh button to display available parameters. Select a.

6. Click OK.

7. The test case displays a in the overrides table. Double-click the Override Value and enter 1.1.

 Override Model Parameters in a Test Case

6-33

Run the Test and View Results

Select the test file in the Test Browser pane and click Run. In the Results and Artifacts pane,
expand the results to see the Baseline Criteria Result and Sim Output.

Select Mux: 1[1] inside Baseline Criteria Result to see how overriding the parameter a affected
the mux signal when compared to the captured baseline. The comparison output shows a maximum
difference of approximately 0.6.

6 Test Manager Test Cases

6-34

Overriding Parameters using Data Files

1. Return to the test case and scroll to the Parameter Overrides section.

2. Click the Add arrow and select Add File from drop down.

Select the sltestOverrideExampleData.mat file from the matlab\examples\simulinktest
folder. This file contains data that can be used by the test case to override the parameters.

 Override Model Parameters in a Test Case

6-35

Select a row, right-click, and select Export. Exports the variable to the MATLAB® base workspace
with a variable name a.

Run the test again and review the results.

sltest.testmanager.clearResults;
close(tf);
sltest.testmanager.close

6 Test Manager Test Cases

6-36

Test Two Simulations for Equivalence
Verify model equivalence in normal and SIL simulation mode.

This example shows how to test for equivalence between two models using test harnesses and the
test manager. One model runs in normal mode, and a test harness model created from a subsystem
runs in software-in-the-loop (SIL) mode.

The equivalence test case in the test manager compares signal output between two simulations to
determine equivalence. Signals from the main model and the test harness are set up for logging in
this example. The logged signals are used as the equivalence criteria between normal and SIL mode.

Configure the Model

Open the sltestNormalSILEquivalenceExample model.

mdl = 'sltestNormalSILEquivalenceExample';
harnessOwner = 'sltestNormalSILEquivalenceExample/Controller';
open_system(mdl);

Turn on signal logging in the model.

set_param(mdl,'SignalLogging','on','SignalLoggingName', 'SIL_signals');

Mark the Controller subsystem output and input signals for logging.

ph_controller_in = get_param('sltestNormalSILEquivalenceExample/Controller/In1','PortHandles');
ph_controller_out = get_param('sltestNormalSILEquivalenceExample/Controller','PortHandles');

set_param(ph_controller_in.Outport(1),'DataLogging','on');
set_param(ph_controller_out.Outport(1),'DataLogging','on');
clear ph_controller_in ph_controller_out;

 Test Two Simulations for Equivalence

6-37

Simulate the model and output the logged signals. The signal data is used as input for the test
harness.

out = sim(mdl);

Get the logged signal data.

out_data = out.get('SIL_signals');
control_in1 = out_data.get(2);

Create a Test Harness for SIL Verification.

The command to create the harness will generate code. Switch to a directory with write permissions.

origDir = pwd;
dirName = tempname;
mkdir(dirName);
cd(dirName);
cleanup = onCleanup(@()cd(origDir));
sltest.harness.create(harnessOwner,'Name','SIL_Harness','VerificationMode','SIL');

Starting build procedure for: Controller
Successful completion of build procedure for: Controller
Creating SIL block ...
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.

Build Summary

Top model targets built:

Model Action Rebuild Reason
===
Controller Code generated and compiled Code generation information file does not exist.

1 of 1 models built (0 models already up to date)
Build duration: 0h 1m 45.397s

Open the test harness.

sltest.harness.open(harnessOwner,'SIL_Harness');

Set Up Logging in the Test Harness

Turn on signal logging in the test harness.

set_param('SIL_Harness','SignalLogging','on','SignalLoggingName', 'SIL_signals');

Mark the test harness outport for signal logging to use in the equivalence test case.

6 Test Manager Test Cases

6-38

ph_harness_out = get_param('SIL_Harness/Controller','PortHandles');
set_param(ph_harness_out.Outport(1),'DataLogging','on');
clear ph_harness_out;

Assign the input data from the simulation to the test harness.

set_param('SIL_Harness','LoadExternalInput','on',...
 'ExternalInput','control_in1.Values');

Create an Equivalence Test Case in the Test Manager

Open the test manager by opening the Apps tab, clicking Simulink Test in the Model Verification,
Validation, and Test section, and then clicking *Simulink Test Manager" in the *Tests" tab. Alternately,
use the command

sltestmgr

Create an equivalence test case.

1 From the test manager toolstrip, click the New arrow and select Test File > Blank Test File.
2 Specify the test file as testHarnessEquivalence.mldatx. The test manager creates the test

file with a new test suite and baseline test case by default.
3 In the Test Browser pane, select the baseline test case, New Test Case 1, and click Delete.
4 Select New Test Suite 1.

 Test Two Simulations for Equivalence

6-39

5 From the toolstrip, click the New arrow and select Equivalence Test.
6 In the Test Browser pane, right-click the new equivalence test case and select Rename. Name

the new equivalence test case SIL Equivalence Test.

Assign the test harness to the equivalence test case Simulation 1.

1 Expand Simulation 1 and System Under Test.
2 Click the Use current model button to assign sltestNormalSILEquivalenceExample to

Model.
3 Expand Test Harness.
4 Click the Refresh button to get an up-to-date list of available test harnesses.
5 Select SIL_Harness from the Harness menu to use as the System Under Test.

Assign the sltestNormalSILEquivalenceExample model as Simulation 2.

1 Collapse Simulation 1.
2 Expand Simulation 2 and System Under Test.
3 Click the Use current model button to assign sltestNormalSILEquivalenceExample to

Model.
4 Collapse Simulation 2.

Capture the equivalence criteria. Under Equivalence Criteria, click Capture to run the test harness
in Simulation 1 and identify the equivalence signal.

6 Test Manager Test Cases

6-40

Run the Test Case and View the Results

Select SIL Equivalence Test in the Test Browser pane and click Run in the toolstrip. The test
manager switches to the Results and Artifacts pane and runs the equivalence test case. The test
case passes because the signal comparison between the model and the test harness matches. Expand
the results set and select the Controller:1 option button to plot the signal comparison.

 Test Two Simulations for Equivalence

6-41

close_system(mdl, 0);
clear mdl harnessOwner cleanup control_in1 origDir out out_data;

See Also
Test Manager

More About
• “Create and Run a Back-to-Back Test” on page 6-43
• “SIL Verification for a Subsystem” on page 5-2

6 Test Manager Test Cases

6-42

Create and Run a Back-to-Back Test
In this section...
“Run the Back-to-Back Test” on page 6-46
“View the Back-to-Back Test Results” on page 6-46

This example shows how to create and run a back-to-back test, which is also known as an equivalence
test. Back-to-back tests compare the results of normal simulations with the generated code results
from software-in-the-loop, processor-in-the-loop, or hardware-in-the-loop simulations.

1 Set the current working folder to a writable folder.
2 Open the rtwdemo_sil_block model.

open_system('rtwdemo_sil_block')
3 To select the component to test, click the Controller subsystem.

4 To open the Simulink Test tab, in the Apps tab, in the Model Verification, Validation, and Test
section, click Simulink Test.

5 To open the Test Manager, in the Tests tab, click Simulink Test Manager.

6 Click New > Test for Model Component. The Create Test for Model Component wizard opens.
7 To specify the Top model and Component to test, fill the fields by clicking the Use currently

selected model component button next to the Component field.

 Create and Run a Back-to-Back Test

6-43

8 Click Next to specify how to obtain the test harness inputs. Select Use component input from
the top model as test input. This option runs the model and creates the test harness inputs
using the inputs to the selected model component.

9 Click Next to select the testing method. Click Perform back-to-back testing. For
Simulation1, use Normal. For Simulation2, use Software-in-the-Loop (SIL).

6 Test Manager Test Cases

6-44

10 Click Next to specify the test harness input source, format, and where to save the test data and
generated tests. For Specify the file format in which to save the test data, select EXCEL. For
Specify the location to save test data, use the default location name. Enter B2BtestFile for
the Test File Location.

11 Click Done. The test harness and test case are created and the wizard closes.

 Create and Run a Back-to-Back Test

6-45

Run the Back-to-Back Test
To run the back-to-back test, click Run.

View the Back-to-Back Test Results
Expand the Results hierarchy in the Results and Artifacts panel. Select Out1:1 under Equivalence
Criteria Result. The upper plot shows that the output signals align and the lower plot shows that
there is zero difference between the output signals.

6 Test Manager Test Cases

6-46

See Also
sltest.testmanager.TestSuite | sltest.testmanager.TestFile | Test Manager

More About
• “Generate Tests and Test Harnesses for a Component or Model” on page 6-26

 Create and Run a Back-to-Back Test

6-47

Testing AUTOSAR Compositions
Run back-to-back tests on an AUTOSAR composition model.

This example demonstrates test harness features and back-to-back testing workflows for an
AUTOSAR composition model. Switch to a directory with write permissions.

The example uses a model of a throttle position controller for an automobile. It is based closely on a
shipping AUTOSAR Blockset example. For details, see “Import AUTOSAR Composition to Simulink”
(AUTOSAR Blockset).

Open the AUTOSAR Composition Model

AUTOSAR composition models contain a network of interconnected Model blocks, each of which
represents an atomic AUTOSAR software component (ASWC). The throttle position controller
composition was created by an AUTOSAR authoring tool (AAT) and imported into Simulink using an
ARXML file that describes the composition.

The composition model contains six component models, one for each atomic software component in
the composition. Simulink inports and outports represent AUTOSAR ports and signal lines represent
AUTOSAR component connectors.

mdl = 'sltestThrottlePositionControlCompositionExample.slx';
open_system(mdl);

Open Test Harness

A test harness for the model has been generated and can be opened using the perspective control in
the lower right corner of the editor canvas. Alternately, use:

sltest.harness.open('sltestThrottlePositionControlCompositionExample',...
 'BasicSchedulerTest');

6 Test Manager Test Cases

6-48

A Test Sequence block is used as the source. The component under test requires the accelerator
pedal position sensor input APP_HwIO_Value, which is modeled in the Test Sequence block using a
simple three step sequence:

 Testing AUTOSAR Compositions

6-49

The Initialize step sets the input to a nominal value and the Run step models a steady
acceleration command for 950 ms. The acceleration command is reset to the nominal value in the
Terminate step. The component under test requires two additional inputs that capture the primary
and secondary throttle position sensor readouts. These inputs are modeled using an external time
series input and are directly fed through the Test Sequence block without modification. This modeling
style is useful when some stimulus inputs can be modeled and others are only available as externally
captured data.

Test Harnesses for Export Functions

The component under test is the AUTOSAR composition model, which uses the export-function
modeling style. When you create a test harness for an export-function model, the harness will contain
a Test Sequence block configured to call each root-level Simulink Function block and send a trigger
event to each function-call subsystem in the model. The generated Test Sequence block can be used
as a convenient starting point for modeling a scheduler.

In this example, since the input signal data is also being generated by a Test Sequence source block,
the code to send the trigger events has been consolidated into a single Test Sequence block and

6 Test Manager Test Cases

6-50

embedded in each step after the stimulus waveforms have been generated. The call order of the
trigger events are computed using compiled information from the composition model.

1 send(TPS_Primary_Run_0005)
2 send(TPS_Secondary_Run_0005)
3 send(Monitor_Run_0005)
4 send(APPSnsr_Run_0005)
5 send(Controller_Run_0005)
6 send(Actuator_Run_0005)

Simulate the model to see the throttle command output from the component under test.

sim('BasicSchedulerTest');
open_system('BasicSchedulerTest/Scope');

Back-to-back Testing

The test manager can be used to lock down simulation behavior and verify equivalence in software-in-
the-loop (SIL) mode. Open the test file and run the equivalence test.

 Testing AUTOSAR Compositions

6-51

close_system(mdl,0);
file_mldatx = 'sltestThrottlePositionControlTests.mldatx';
open(file_mldatx);
sltest.testmanager.run;

The test case verifies the open-loop behavior of the Throttle Position Controller ASWC within the %
composition model. The first part of the equivalence test case runs the test harness containing the
composition in normal simulation mode. The second part of the test uses the Post-Load callback to
switch the Throttle Position Controller ASWC to software-in-the-loop (SIL) mode with Top model
code interface. The results of both simulations show that the behavior is equivalent.

Cleanup

clear sltestThrottlePositionControlData HBridgeCmd_LkupTbl ...
 SensorSelection SetpointPercent_LkupTbl TPSPrimaryPercent_LkupTbl...
 TPSSecondaryPercent_LkupTbl TPSPercent_LkupTbl tout logsout mdl file_mldatx;
sltest.testmanager.clear;
sltest.testmanager.clearResults;
sltest.testmanager.close;

6 Test Manager Test Cases

6-52

Automate Testing for Highway Lane Following
This example shows how to assess the functionality of a lane-following application by defining
scenarios based on requirements, automating testing of components and the generated code for
those components. The components include lane-detection, sensor fusion, decision logic, and
controls. This example builds on the “Highway Lane Following” (Automated Driving Toolbox)
example.

Introduction

A highway lane-following system steers a vehicle to travel within a marked lane. It also maintains a
set velocity or safe distance from a preceding vehicle in the same lane. The system typically includes
lane detection, sensor fusion, decision logic, and controls components. System-level simulation is a
common technique for assessing functionality of the integrated components. Simulations are
configured to test scenarios based on system requirements. Automatically running these simulations
enables regression testing to verify system-level functionality.

The “Highway Lane Following” (Automated Driving Toolbox) example showed how to simulate a
system-level model for lane-following. This example shows how to automate testing that model
against multiple scenarios using Simulink Test™. The scenarios are based on system-level
requirements. In this example, you will:

1 Review requirements: The requirements describe system-level test conditions. Simulation test
scenarios are created to represent these conditions.

2 Review the test bench model: Review the system-level lane-following test bench model that
contains metric assessments. These metric assessments integrate the test bench model with
Simulink Test for the automated testing.

3 Disable runtime visualizations: Runtime visualizations are disabled to reduce execution time
for the automated testing.

4 Automate testing: A test manager is configured to simulate each test scenario, assess success
criteria, and report results. The results are explored dynamically in the test manager and
exported to a PDF for external reviewers.

5 Automate testing with generated code: The lane detection, sensor fusion, decision logic, and
controls components are configured to generate C++ code. The automated testing is run on the
generated code to verify expected behavior.

6 Automate testing in parallel: Overall execution time for running the tests is reduced using
parallel computing on a multi-core computer.

Testing the system-level model requires a photorealistic simulation environment. In this example, you
enable system-level simulation through integration with the Unreal Engine from Epic Games®. The
3D simulation environment requires a Windows® 64-bit platform.

if ~ispc
 error("The 3D simulation environment requires a Windows 64-bit platform");
end

To ensure reproducibility of the simulation results, set the random seed.

rng(0);

 Automate Testing for Highway Lane Following

6-53

Review Requirements

Requirements Toolbox™ lets you author, analyze, and manage requirements within Simulink. This
example contains ten test scenarios, with high-level testing requirements defined for each scenario.
Open the requirement set.

To explore the test requirements and test bench model, open a working copy of the project example
files. MATLAB copies the files to an example folder so that you can edit them. The TestAutomation
folder contains the files that enables the automate testing.

addpath(fullfile(matlabroot, 'toolbox', 'driving', 'drivingdemos'));
helperDrivingProjectSetup('HighwayLaneFollowing.zip', 'workDir', pwd);

open('HighwayLaneFollowingTestRequirements.slreqx')

Alternatively, you can also open the file from the Requirements tab of the Requirements Manager
app in Simulink.

Each row in this file specifies the requirements in textual and graphical formats for testing the lane-
following system for a test scenario. The scenarios with the scenario_LF_ prefix enable you to test
lane-detection and lane-following algorithms without obstruction by other vehicles. The scenarios
with the scenario_LFACC_ prefix enable you to test lane-detection, lane-following, and ACC behavior
with other vehicles on the road.

6 Test Manager Test Cases

6-54

1 scenario_LF_01_Straight_RightLane — Straight road scenario with ego vehicle in right
lane.

2 scenario_LF_02_Straight_LeftLane — Straight road scenario with ego vehicle in left lane.
3 scenario_LF_03_Curve_LeftLane — Curved road scenario with ego vehicle in left lane.
4 scenario_LF_04_Curve_RightLane — Curved road scenario with ego vehicle in right lane.
5 scenario_LFACC_01_Curve_DecelTarget — Curved road scenario with a decelerating lead

vehicle in ego lane.
6 scenario_LFACC_02_Curve_AutoRetarget — Curved road scenario with changing lead

vehicles in ego lane. This scenario tests the ability of the ego vehicle to retarget to a new lead
vehicle while driving along a curve.

7 scenario_LFACC_03_Curve_StopnGo — Curved road scenario with a lead vehicle slowing
down in ego lane.

8 scenario_LFACC_04_Curve_CutInOut — Curved road scenario with a fast moving car in the
adjacent lane cuts into the ego lane and cuts out from ego lane.

9 scenario_LFACC_05_Curve_CutInOut_TooClose — Curved road scenario with a fast moving
car in the adjacent lane cuts into the ego lane and cuts out from ego lane aggressively.

10 scenario_LFACC_06_Straight_StopandGoLeadCar — Straight road scenario with a lead
vehicle that breaks down in ego lane.

These requirements are implemented as test scenarios with the same names as the scenarios used in
the HighwayLaneFollowingTestBench model.

Review Test Bench Model

This example reuses the HighwayLaneFollowingTestBench model from the “Highway Lane
Following” (Automated Driving Toolbox) example. Open the test bench model.

open_system("HighwayLaneFollowingTestBench");

 Automate Testing for Highway Lane Following

6-55

This test bench model has Simulation 3D Scenario, Lane Marker Detector, Vehicle Detector,
Forward Vehicle Sensor Fusion, Lane Following Decision Logic and Lane Following
Controller and Vehicle Dynamics components.

This test bench model is configured using the helperSLHighwayLaneFollowingSetup script. This
setup script takes scenarioName as input. scenarioName can be any one of the previously
described test scenarios. To run the setup script, use code:

scenarioName = "scenario_LFACC_03_Curve_StopnGo";
helperSLHighwayLaneFollowingSetup("scenarioFcnName",scenarioName);

You can now simulate the model and visualize the results. For more details on the analysis of the
simulation results and the design of individual components in the test bench model, see the “Highway
Lane Following” (Automated Driving Toolbox) example.

In this example, the focus is more on automating the simulation runs for this test bench model using
Simulink Test for the different test scenarios. The Metrics Assessment subsystem enables
integration of system-level metric evaluations with Simulink Test. This subsystem uses Check Static
Range blocks for this integration. Open the Metrics Assessment subsystem.

open_system("HighwayLaneFollowingTestBench/Metrics Assessment");

In this example, four metrics are used to assess the lane-following system.

• Verify Lateral Deviation: Verifies that the lateral deviation from the centerline of the lane is
within prescribed thresholds for the corresponding scenario. Prescribed thresholds are defined
while authoring the test scenario.

6 Test Manager Test Cases

6-56

• Verify In Lane: Verifies that the ego vehicle is following one of the lanes on the road throughout
the simulation.

• Verify Time gap: Verifies that the time gap between the ego vehicle and the lead vehicle is above
0.8 seconds. The time gap between the two vehicles is defined as the ratio of the calculated
headway distance to the ego vehicle velocity.

• Verify No Collision: Verifies that the ego vehicle does not collide with the lead vehicle at any
point during the simulation.

Disable Runtime Visualizations

The system-level test bench model visualizes intermediate outputs during the simulation for the
analysis of different components in the model. These visualizations are not required when the tests
are automated. You can reduce execution time for the automated testing by disabling them.

Disable runtime visualizations for the Lane Marker Detector subsystem.

load_system('LaneMarkerDetector');
blk = 'LaneMarkerDetector/Lane Marker Detector';
set_param(blk,'EnableDisplays','off');

Disable runtime visualizations for the Vehicle Detector subsystem.

load_system('VisionVehicleDetector');
blk = 'VisionVehicleDetector/Vision Vehicle Detector/ACF/ACF';
set_param(blk,'EnableDisplay','off');

Configure the Simulation 3D Scene Configuration (Automated Driving Toolbox) block to run the
Unreal Engine in headless mode, where the 3D simulation window is disabled.

blk = ['HighwayLaneFollowingTestBench/Simulation 3D Scenario/', ...
 'Simulation 3D Scene Configuration'];
set_param(blk,'EnableWindow','off');

Automate Testing

The Test Manager is configured to automate the testing of the lane-following application. Open the
HighwayLaneFollowingTestAssessments.mldatx test file in the Test Manager.

sltestmgr;
testFile = sltest.testmanager.load('HighwayLaneFollowingTestAssessments.mldatx');

 Automate Testing for Highway Lane Following

6-57

Observe the populated test cases that were authored previously in this file. Each test case is linked to
the corresponding requirement in the Requirements Editor for traceability. Each test case uses the
POST-LOAD callback to run the setup script with appropriate inputs and to configure the output video
file name. After the simulation of the test case, it invokes
helperGenerateFilesForLaneFollowingReport from the CLEAN-UP callback to generate the
plots explained in the “Highway Lane Following” (Automated Driving Toolbox) example.

Run and explore results for a single test scenario:

To reduce command-window output, turn off the MPC update messages.

mpcverbosity('off');

To test the system-level model with the scenario_LFACC_03_Curve_StopnGo test scenario from
Simulink Test, use this code:

testSuite = getTestSuiteByName(testFile,'Test Scenarios');
testCase = getTestCaseByName(testSuite,'scenario_LFACC_03_Curve_StopnGo');
resultObj = run(testCase);

To generate a report after the simulation, use this code:

sltest.testmanager.report(resultObj,'Report.pdf',...,
 'Title','Highway Lane Following',...
 'IncludeMATLABFigures',true,...

6 Test Manager Test Cases

6-58

 'IncludeErrorMessages',true,...
 'IncludeTestResults',0,'LaunchReport',true);

Examine the report Report.pdf. Observe that the Test environment section shows the platform on
which the test is run and the MATLAB® version used for testing. The Summary section shows the
outcome of the test and duration of the simulation in seconds. The Results section shows pass/fail
results based on the assessment criteria. This section also shows the plots logged from the
helperGenerateFilesForLaneFollowingReport function.

Run and explore results for all test scenarios:

You can simulate the system for all the tests by using sltest.testmanager.run. Alternatively, you
can simulate the system by clicking Play in the Test Manager app.

After completion of the test simulations, the results for all the tests can be viewed in the Results and
Artifacts tab of the Test Manager. For each test case, the Check Static Range blocks in the model are
associated with the Test Manager to visualize overall pass/fail results.

You can find the generated report in current working directory. This report contains a detailed
summary of pass/fail statuses and plots for each test case.

 Automate Testing for Highway Lane Following

6-59

Verify test status in Requirements Editor:

Open the Requirements Editor and select Display. Then, select Verification Status to see a
verification status summary for each requirement. Green and red bars indicate the pass/fail status of
simulation results for each test.

6 Test Manager Test Cases

6-60

Automate Testing with Generated Code

The HighwayLaneFollowingTestBench model enables integrated testing of Lane Marker
Detector, Vehicle Detector, Forward Vehicle Sensor Fusion, Lane Following Decision Logic,
and Lane Following Controller components. It is often helpful to perform regression testing of
these components through software-in-the-loop (SIL) verification. If you have Embedded Coder™
Simulink Coder™ license, then you can generate code for these components. This workflow lets you
verify that the generated code produces expected results that match the system-level requirements
throughout simulation.

Set Lane Marker Detector to run in Software-in-the-loop mode.

model = 'HighwayLaneFollowingTestBench/Lane Marker Detector';
set_param(model,'SimulationMode','Software-in-the-loop');

Set Vehicle Detector to run in Software-in-the-loop mode.

model = 'HighwayLaneFollowingTestBench/Vehicle Detector';
set_param(model,'SimulationMode','Software-in-the-loop');

Set Forward Vehicle Sensor Fusion to run in Software-in-the-loop mode.

 Automate Testing for Highway Lane Following

6-61

model = 'HighwayLaneFollowingTestBench/Forward Vehicle Sensor Fusion';
set_param(model,'SimulationMode','Software-in-the-loop');

Set Lane Following Decision Logic to run in Software-in-the-loop mode.

model = 'HighwayLaneFollowingTestBench/Lane Following Decision Logic';
set_param(model,'SimulationMode','Software-in-the-loop');

Set Lane Following Controller to run in Software-in-the-loop mode.

model = 'HighwayLaneFollowingTestBench/Lane Following Controller';
set_param(model,'SimulationMode','Software-in-the-loop');

Now, run sltest.testmanager.run to simulate the system for all the test scenarios. After the
completion of tests, review the plots and results in the generated report.

Enable the MPC update messages again.

mpcverbosity('on');

Automate Testing in Parallel

If you have a Parallel Computing Toolbox™ license, then you can configure Test Manager to execute
tests in parallel using a parallel pool. To run tests in parallel, save the models after disabling the
runtime visualizations using save_system('LaneMarkerDetector'),
save_system('VisionVehicleDetector') and
save_system('HighwayLaneFollowingTestBench'). Test Manager uses the default Parallel
Computing Toolbox cluster and executes tests only on the local machine. Running tests in parallel can
speed up execution and decrease the amount of time it takes to get test results. For more information
on how to configure tests in parallel from the Test Manager, see “Run Tests Using Parallel Execution”
on page 6-140.

6 Test Manager Test Cases

6-62

Synchronize Tests
If you change the system under test, you can synchronize the test cases to reflect the model changes.
Also, if you remove model components, you can disable or delete test cases in the Test Manager when
you synchronize.

Synchronizing your test file automatically creates a new test case for:

• Each new scenario in the Signal Editor block at the top level of your model and the top level of
each test harness. The model must have only one Signal Editor block at those levels to create a
test case.

• Each new test harness in the model.

To synchronize your test file:

1 In the Test Manager Test Browser pane, hover over the test file name that you want to update.
2 Click the synchronization button next to the test file name.
3 Follow the prompts to specify:

• The type of test file to create for the new components
• Whether to disable or delete out-of-date components

Disabled tests appear in the list in italic.

See Also

More About
• “Automatically Create a Set of Test Cases” on page 6-21

 Synchronize Tests

6-63

Use External Excel or MAT-File Data in Test Cases

In this section...
“Data Mapping” on page 6-64
“Create a Test Case from an Excel Spreadsheet” on page 6-65
“Import an Excel Spreadsheet into an Existing Test Case” on page 6-66
“Add Multiple Microsoft Excel Spreadsheets as Input to a Test Case” on page 6-67
“Include Microsoft Excel Test Data in Test Results” on page 6-67
“Importing Test Data from Microsoft Excel” on page 6-67
“Add a MAT-File as an External Input” on page 6-70

Test cases can use data defined in external MAT-files or Microsoft® Excel files. For information about
the Excel file format, see “Format Test Case Data in Excel” on page 6-75.

You can add multiple external input files to a test case. After you add the files, select the one you
want to use in the test case from the External Inputs table. If you are using test iterations, you can
assign one input file to each iteration.

Data Mapping
Mapping Modes

To use external data, you map the data to your model (system under test [SUT]) using these mapping
modes:

• The names of the inport block the signal data corresponds to
• The full block path name, in the form system/block
• The name of the signal associated with the inport block
• The port number, that is, sequential port numbers of the inport blocks, starting at 1

For more information about how Simulink handles inport mapping, see “Map Root Inport Signal
Data”.

Mapping Status

When you map external inputs to model elements, the mapping creates these possible results. These
results appear under Inputs in the Test Manager interface in the Status column:

• Mapped — The mapping succeeded and no further action is needed.
• Failed — The mapping failed. Click the Failed link for more information.
• Warning — The mapping occurred with warnings. Click the Warning link to see whether you need

to address them
• Stale — This status can occur when you update your external inputs in Test Manager. A stale state

occurs if you did not map the new inputs. To address this status, click the Status link, which
opens the Add Input dialog box. Click Map Inputs to map the new input data and then click Add.

6 Test Manager Test Cases

6-64

Create a Test Case from an Excel Spreadsheet
This example shows how to import an Excel Spreadsheet to define a test case.

1. Open Simulink Test Manager.

2. Select New > Test from Spreadsheet. This opens the Create Test from Spreadsheet Wizard.

3. Select Use existing test data from a spreadsheet. Then, click on the folder icon and select
coordinate_text.xlsx as the spreadsheet. Click Next.

4. Enter coordinate_transform_test as the model. Click Next.

5. On the Attributes page, check that the attribute categories in the spreadsheet are displayed.

6. Click Validate to map each input to the model by block name. When the attributes are validated,
the icons change to green. If necessary, change the spreadsheet and/or system under test, click
Refresh, and validate again. Click Next.

7. Specify a location to save the test file and click Done.

Simulink Test creates a new test case and imports the spreadsheet. The fields defined in the
spreadsheet are locked to the spreadsheet, and cannot be edited in the Test Manager. To change the
locked fields, edit the spreadsheet outside of MATLAB.

 Use External Excel or MAT-File Data in Test Cases

6-65

If you cannot see all the data in a column, click + in the upper right corner to hide other columns and
resize the desired column.

For multi-dimensional signals, each dimension is represented in a separate column in the
spreadsheet. By default, only the dimensions with non-zero values are included. If all dimensions have
zero value, then only the last dimension is included in the spreadsheet.

Import an Excel Spreadsheet into an Existing Test Case
If you have a test case and want to add test data to it from an Excel spreadsheet, you must associate
the test case with the spreadsheet:

1 Open the test case.
2 Check the Create Test Case from External File option.
3 Browse for the spreadsheet with the test data.

The input, parameter, and comparison signal data in the spreadsheet overrides the data in the test
case. The fields defined in the spreadsheet are locked to the spreadsheet. To edit, do one of the
following:

6 Test Manager Test Cases

6-66

• Edit the spreadsheet outside of MATLAB and click Refresh for the File field.
• Clear the Create Test Case from External File option and edit the test case in the Test

Manager. Selecting this option again causes values in the spreadsheet to overwrite the values in
the test.

Add Multiple Microsoft Excel Spreadsheets as Input to a Test Case
You can import multiple Microsoft Excel spreadsheets at once and specify a range of data. Selecting
sheets and specifying ranges is useful when each sheet contains a different data set or the same file
contains input data and expected outputs.

1 In the test case, expand the Inputs section and click Add.
2 Browse to your Microsoft Excel file and click Add.
3 Select each sheet that contains input data. You can specify a range of data.
4 If you want to use each sheet to create an input set in the table, select Create scenarios from

each sheet.
5 Under Input Mapping, select a mapping mode.
6 Click Map Inputs. The Mapping Status table shows the port and signal mapping.

For more information about troubleshooting the mapping, see “Understand Mapping Results”.
7 Click Add.

Include Microsoft Excel Test Data in Test Results
1 In the test case, expand the Inputs section and click Include input data in test result.
2 Under the External Inputs table, click Add.
3 In the Add Input dialog box, specify the Excel file name and the mapping mode, which specifies

how to map the Excel data to root-level Inport blocks in the model.
4 Click Map Inputs. The Mapping Status table shows the port and signal mapping.
5 Click Add.

See “Importing Test Data from Microsoft Excel” on page 6-67 for a complete example.

Importing Test Data from Microsoft Excel
Test a model using inputs stored in Microsoft® Excel®.

This example shows how to create a test case in the Test Manager and map data to the test case from
a Microsoft® Excel® file. Input mapping supports Microsoft Excel spreadsheets only for Microsoft
Windows®.

Create a Test File

1. Open the Test Manager. Enter

sltest.testmanager.view

2. In the test manager toolbar, select New > Test File. Save the file to a writable directory. The test
manager creates a test file with an empty baseline test case.

 Use External Excel or MAT-File Data in Test Cases

6-67

3. In the test browser, select the test case. In the test editor, under the System Under Test section,
enter sltestExcelExample.

Configure the External Inputs.

1. Expand the Inputs section of the test case.

2. To include the input data in the test results, click Include input data in test result.

3. Under the External Inputs table, click Add.

4. In the Add Input dialog box, for File, select the sltestExampleInputs.xlsx from the current
directory. This file contains two tabs, named Acceleration and Braking. Each tab represents a
complete set of inputs for a single simulation.

5. In the Add Input dialog box,

• Select the Acceleration sheet from the sheets table.
• Select Mapping Mode : Block Name.
• Click Map Inputs.
• Click Add.

6 Test Manager Test Cases

6-68

The Mapping Mode controls the method used to map data from the Microsoft Excel sheet to root-
level Inport blocks in the model. For more information, see “Use External Excel or MAT-File Data in
Test Cases” on page 6-64.

The test case shows the inputs mapped.

 Use External Excel or MAT-File Data in Test Cases

6-69

Run the Test

1. In the toolbar, click Run.

2. In the Results and Artifacts pane, you can plot signals from the external inputs or the simulation
output.

Add a MAT-File as an External Input
1 In the test case, expand the Inputs section and click Add.
2 Browse to the MAT-file and click Add.
3 Under Input Mapping, choose a mapping mode.
4 Click Map Inputs. The Mapping Status table shows the port and signal mapping.

6 Test Manager Test Cases

6-70

For information about troubleshooting the mapping status, see “Understand Mapping Results”.
5 Click Add.

See Also
sltest.testmanager.TestInput | sltest.io.SimulinkTestSpreadsheet

More About
• “Map Signal Data to Root Input Ports”
• “Map Root Inport Signal Data”
• “Create Data Files for Test Case Input” on page 6-72

 Use External Excel or MAT-File Data in Test Cases

6-71

Create Data Files for Test Case Input
You can use Test Manager to create MAT-file and Microsoft Excel data files to use as inputs to test
cases. You generate a template that contains the signal names and the times, and then enter the data.

Creating a data file also adds the file to the list of available input files for the test case. After you add
input data, you can then select the file to use in your test case.

You can create files for input data only for tests that run in the current release. To select the release,
in the test case, use the Select releases for simulation list.

You can edit input files. After you create the template, select the file from the list of input files and
click Edit. MAT-files open in the signal editor. Excel files open in Excel.

Selecting the Add an iteration that runs this input check box adds an iteration to the test case
under Table Iterations and assigns the input file to it. After you create the input file, continue to
specify the iteration. For more information on iterations, see “Test Iterations” on page 6-113.

Generate an Excel Template
You can generate a template test spreadsheet from a model or harness (system under test [SUT]). You
can then complete the spreadsheet with external data and import it into Simulink Test as a test case.

The Create Test from Spreadsheet wizard parses the SUT for test attributes and automatically
generates a template spreadsheet and a test case:

• Inputs — Inputs are characterized by root input ports
• Parameters — Named parameters in the model
• Comparison signals — Logged signals and output ports

The wizard allows you to filter and edit the attributes needed for testing. The resulting spreadsheet
has separate column sets for inputs, parameters, and comparison signals. If multiple iterations are
required, a separate sheet in the same file is generated for each scenario. You can expand the
spreadsheet to add time-based signal data, tolerances, and parameter overrides. See “Format Test
Case Data in Excel” on page 6-75 for the full description of the format readable by Simulink Test.

You can use the coordinate_transform_test model as an example for the process. Its associated Excel
file is coordinate_test.xlsx.

1 Open the test manager. On the Apps tab, under Model Verification, Validation, and Test, click
Simulink Test. Then, on the Tests tab, click Simulink Test Manager.

2 Open the wizard. From Simulink Test Manager, select New > Test from Spreadsheet. Select
Create a test template file for specifying data and follow the prompts.

3 In the Attributes page, select which attribute categories are to be included in the spreadsheet.
For example, if parameter overrides are not necessary for the tests, clear Parameters. The
attribute categories shown on the page are derived from the SUT. Comparison signals are always
shown.

4 If the test requires all attributes in a category as is, select Yes, include all attributes in the
spreadsheet and click Next. If not, select No, I want to filter and edit the attributes. This
shows a page with a tab for each attribute category.

6 Test Manager Test Cases

6-72

5 If you are filtering the attributes, in the Parameters and Comparison tabs, clear the attributes
that are not needed. For example, you can remove a logged signal from this list if it is not to be
used for comparison in the tests.

6 Optionally change tolerances in the Comparison page. The tolerance settings apply to all signals
in the list. To specify different tolerances for each signal, edit the spreadsheet after it is
generated.

If you change the SUT during the selection process, click Refresh to synchronize the attribute
lists with the SUT. Once selection is complete, click Next and keep following the prompts.

7 In the Scenarios page, specify the number of test scenarios and a base name for the sheets in
the spreadsheet.

If comparison signals are selected, the wizard runs the model to capture the baseline. Make sure that
the model does not run indefinitely by setting a finite stop time. The wizard creates two files:

• Excel spreadsheet — The spreadsheet includes columns for inputs, parameters, and comparison
signals. Inputs and comparisons have different time bases. An identical sheet for each test
scenario is generated. Complete the spreadsheet outside MATLAB to uniquely define each
scenario.

 Create Data Files for Test Case Input

6-73

• Test file — The test case imports the Excel spreadsheet. The fields defined in the spreadsheet are
locked to the spreadsheet, and cannot be edited in the Test Manager.

To change the locked fields, edit the spreadsheet outside MATLAB.If you change a parameter, you
must capture the baseline again by clicking the Capture button.

6 Test Manager Test Cases

6-74

Format Test Case Data in Excel
You can specify signal data in a Microsoft Excel file to use as input to your test case or as baseline
criteria (outputs). The Excel file includes time and signal data. To support a range of models and
configurations, you can specify signal data of most data types. You can indicate whether signals are
scalar, multidimensional, or complex. You can optionally specify the data type, block path and port
index, units, interpolation type, and function-call execution times.

Note For information on how to format data in Excel files, see “Microsoft Excel Import, Export, and
Logging Format”.

Additional information specific to test cases includes:

• Importing the file as input data — Use the Inputs section of the test case, described in “Use
External Excel or MAT-File Data in Test Cases” on page 6-64.

• Using the Excel file as expected outputs — Select the file to add it as baseline data, in the
Baseline Criteria section of the test case, described in “Baseline Criteria” on page 6-155. For
more information, see “Multiple Runs”.

• Capturing inputs and expected outputs in Test Manager — Save inputs and outputs to the same
Excel file. Both sets of data are saved to the same sheet unless you specify a different sheet.
Saving the inputs or expected outputs adds the file to the test. See “Capture Baseline Criteria” on
page 6-155.

• Specifying tolerances — See “Compare Model Output to Baseline Data” on page 6-7.

Create a MAT-File for Input Data
1 In the test case, under System Under Test, specify the model whose input data you want to

create a MAT-file for.
2 In the Inputs section of the test case, click Create.

 Create Data Files for Test Case Input

6-75

3 In the dialog box, set the file format to MAT-file. Specify the location for the MAT-file and click
Create.

The signal editor opens.
4 In the Scenarios and Signals pane of the signal editor, expand the data node. Then select the

signal whose data you want to add.
5 Specify the signal data. Select the data type from the list, and enter the time and signal data for

the signal.

6 To update your signal data, click Apply.
7 After adding the signal data, click Save.

See Also
sltest.testmanager.BaselineCriteria | sltest.testmanager.TestInput

More About
• “Use External Excel or MAT-File Data in Test Cases” on page 6-64
• “Simulation Settings and Release Overrides” on page 6-150
• “Baseline Criteria” on page 6-155

6 Test Manager Test Cases

6-76

Capture Simulation Data in a Test Case
Capture signal data in your test results by adding signals to the Simulation Outputs section of the
test case. Each output is called a logged signal. Signals listed in Simulation Outputs appear in the
test results along with signals that are already selected for logging in Simulink.

You can use logged signals for data comparison in baseline criteria, equivalence criteria, custom
criteria, and for data visualization in the Simulation Data Inspector. Logged signals enable you to
further test your Simulink model without changing the model. In addition to signals from the top
model, you can also log signals from subsystems and model references. You can select signals
associated with local and global data store memory, and from data store memory that uses a
Simulink.Signal object.

Add Logged Signals When Creating a Test Harness
When you right-click a model or model component and click Test Harness > Create for <Model or
Model Element>, the Create Test Harness dialog box opens. To log all output signals of the
component under test, select Log Output Signals, which is on the Basic Properties tab of the
Create New Harness dialog for Subsystem block diagram and library harnesses. For all other types of
harnesses, the option is on the Advanced Properties tab. Signals that are not compatible with
logging do not have a logging badge attached to them. The compatibility is determined at compile
time. After the harness is created, you can turn off logging for a signal by opening the harness, right-
clicking the signal, and selecting Stop Logging Selected Signals. If a signal does not have a name,
it is assigned one for test execution using the format <component under test name>:<output
port number>. Unnamed propagated signals use the name of the signal from which they propagate.
To log all test harness signals programmatically, include 'LogHarnessOutputs',true as an input
to sltest.harness.create.

Add Logged Signals in the Test Manager
To add signals:

1 Open the model sltestFlutterSuppressionSystemExample.

openExample('sltestFlutterSuppressionSystemExample')
2 Use sltestmgr to open the Test Manager.
3 In the Test Manager, under Simulation Outputs, click Add.
4 In the system under test, highlight blocks or signals that you want to log. To select multiple

items, click and drag a selection box over multiple items.
5 A dialog box appears. Select signals in the dialog box.

 Capture Simulation Data in a Test Case

6-77

6 Continue adding signals to the test case. Each time you select a signal, the dialog box also shows
previously logged signals. You can remove a signal from logging by clearing the selection.

7 When you finish adding signals, return to the Test Manager and click Done.
8 The signals appear in the Logged Signals table in the test case.

To add a signal set, click the Add arrow and select Signal Set.

To specify a specific plot for a signal, enter a number in the Plot Index column. By default, the
signals appear on one plot.

You can specify to display the plot immediately after running the test by selecting the Plot signals
on the specified plots after simulation check box.

After you run the test, the logged signals appear in the test case results under Sim Output. Select
each signal to display on the plot. If you specify a plot index, the signal appears in the plot number
you specified.

6 Test Manager Test Cases

6-78

Capture Data from Local and Global Data Stores
Perform similar steps to add simulation output associated with data store memory:

1 Use openExample('sldemo_mdlref_dsm') to open the model, which contains local and global
data store memory.

2 In a test case, from the top model, add the Sine Wave block for logging.
3 Click on the Data Store Read block in the top model. Click on the click to update diagram box.

The dialog box displays the signal associated with the block and the data associated with the
Simulink.Signal object in the base workspace. The model displays the signal storage class for
the block, (global).

4 Select both signals in the dialog box.
5 Open model sldemo_mdlref_dsm_bot. In the Model block, open the subsystem PositiveSS.

Select the Data Store Write block. The table displays the input signal from the Gain block and the
data store memory, RefSignalVal.

 Capture Simulation Data in a Test Case

6-79

6 Select the RefSignalVal data store memory for logging. The dialog box uses a different icon to
indicate the data store memory.

7 Finish selecting signals by clicking Done in the Test Manager window. In the Test manager, the
signals appear under Logged Signals. The Source column displays the full path information for
each signal. For the signal associated with the Simulink.Signal object, Source displays the
workspace location of the Simulink.Signal object.

Logging Leaf Signals of a Bus
In addition to logging an entire Bus block, you can select one or more individual signals within a bus
and add them to the Logged Signals section of Test Manager. For large buses, adding only the
needed signals might reduce the amount of time it takes a test case to run.

1 Open the model using openExample('sldemo_absbrake').
2 Use sltestmgr to open the Test Manager.
3 Click New > Test File to create a new test file. Name and save the file.

Under System Under Test, click the Use current model icon.

6 Test Manager Test Cases

6-80

4 Under Simulation Outputs, click Add.
5 In the system under test, select the signal exiting the Bus, yout.
6 A dialog box appears. Select the desired bus or bus leaf signals in the dialog box. Three

horizontal lines indicate the whole bus. A single horizontal line next to a signal name indicates
that it is a bus leaf signal. If the leaf signals do not appear in the dialog, click Click to update
diagram.

7 Continue adding signals to the test case, such as the non-bus Sd and tire torque signals
8 When you finish adding signals, return to the Test Manager and click Done.
9 The signals appear in the Logged Signals table in the test case.

To add a signal set, click the Add arrow and select Signal Set.

To specify a specific plot for a signal, enter a number in the Plot Index column. By default, the
signals appear on one plot.

You can specify to display the plot immediately after running the test by selecting the Plot signals
on the specified plots after simulation check box.

See Also
sltest.testmanager.TestCase | sltest.testmanager.LoggedSignal |
sltest.testmanager.LoggedSignalSet | Simulink.Signal | Test Manager

More About
• “Assess Simulation and Compare Output Data” on page 3-14

 Capture Simulation Data in a Test Case

6-81

• “Compare Model Output to Baseline Data” on page 6-7

6 Test Manager Test Cases

6-82

Run Tests in Multiple Releases of MATLAB
If you have more than one release of MATLAB installed, you can run tests in multiple releases.
Starting with R2011b, you can also run tests in releases that do not have Simulink Test. Running tests
in multiple releases enables you to use test functionality from later releases while running the tests in
your preferred release of Simulink. You can also compare test results across multiple releases to
better understand Simulink changes before upgrading to a new version of MATLAB and Simulink.

Although you can run test cases on models in previous releases, the release you run the test in must
support the features of the test. For example, if your test involves test harnesses or test sequences,
the release must support those features for the test to run.

Before you can create tests that use additional releases, add the releases to your list of available
releases using Test Manager preferences. See “Add Releases Using Test Manager Preferences” on
page 6-84.

Considerations for Testing in Multiple Releases
Testing Models in Previous or Later Releases

Your model or test harness must be compatible with the MATLAB version running your test.

• If you have a model created in a newer version of MATLAB, to test the model in a previous version
of MATLAB, export the model to a previous version and simulate the exported model with the
previous MATLAB version. For more information, see the information on exporting a model in
“Save the Model”.

• To test a model in a more recent version of MATLAB, consider using the Upgrade Advisor to
upgrade your model for the more recent release. For more information, see “Consult the Upgrade
Advisor”.

Test Case Compatibility with Previous Releases

When collecting coverage in multiple-release tests, you can run tests cases up to three years (six
releases) prior to the current release. Tests that contain logical or temporal assessments are
supported in R2016b and later releases.

Test Case Limitations with Multiple Release Testing

Certain features are not supported for multiple-release testing:

• Parallel test execution
• Running test cases with the MATLAB Unit Test framework
• Real-time tests
• Models with observers
• Input data defined in an external Excel document
• Including custom figures from test case callbacks

 Run Tests in Multiple Releases of MATLAB

6-83

Add Releases Using Test Manager Preferences
Before you can create tests for multiple releases, use Test Manager preferences to include the
MATLAB release you want to test in. You can also delete a release that you added to the available
releases list. However, you cannot delete the release from which you are running Test Manager.

1 In the Test Manager, click Preferences.
2 In the Preferences dialog box, click Release. The Release pane lists the release you are running

Test Manager from.
3 In the Release pane, click Add/Remove releases to open the Release Manager.
4 In the Release Manager, click Add.
5 Browse to the location of the MATLAB release you want to add and click OK.
6 To change the release name that will appear in the Test Manager, edit the Name field.
7 Close the Release Manager. The Preferences dialog box shows the selected releases. Deselect

releases you do not want to make available for running tests.

Run Baseline Tests in Multiple Releases
When you run a baseline test with the Test Manager set up for multiple releases, you can:

• Create the baseline in the release you want to see the results in, for example, to try different
parameters and apply tolerances.

• Create the baseline in one release and run it in another release. Using this approach you can, for
example, know whether a newer release produces the same simulation outputs as an earlier
release.

Create the baseline.

1 Make sure that the release has been added to your Test Manager preferences.
2 Create a test file, if necessary, and add a baseline test case to it.
3 Select the test case.
4 Under System Under Test, enter the name of the model you want to test.
5 Set up the rest of the test.
6 Capture the baseline. Under Baseline Criteria, click Capture. Specify the format and file in

which to save the baseline and select the release in which to capture the baseline. Then, click
Capture to simulate the model.

For more information about capturing baselines, see “Capture Baseline Criteria” on page 6-155.

After you create the baseline, run the test in the selected releases. Each release you selected
generates a set of results.

1 In the test case, expand Simulation Setting and Release Overrides and, in the Select
releases for simulation drop-down menu, select the releases you want to use to compare
against your baseline.

2 Specify the test options.
3 From the toolstrip, click Run.

6 Test Manager Test Cases

6-84

For each release that you select when you run the test case, the pass-fail results appear in the
Results and Artifacts pane. For results from a release other than the one you are running Test
Manager from, the release number appears in the name.

Run Equivalence Tests in Multiple Releases
When you run an equivalence test, you compare two simulations. Each simulation runs in a single
release, which can be the same or different. Examples of equivalence tests include comparing models
run in different model simulation modes, such as normal and software-in-the-Loop (SIL), or
comparing different tolerance settings.

1 Make sure that the releases have been added to your Test Manager preferences.
2 Create a test file, if necessary, and add an equivalence test case to it.
3 Select the test case.
4 Under Simulation 1, System Under Test, enter the name of the model you want to test.
5 Expand Simulation Setting and Release Overrides and, in the Select releases for

simulation drop-down menu, select the release for Simulation 1 of the equivalence test. For an
equivalence test, only one release can be selected for each simulation.

6 Set up the rest of the test.
7 Repeat steps 4 through 6 for Simulation 2.
8 In the toolstrip, click Run.

The test runs each simulation in the release you selected and compares the results for
equivalence. For each release that you selected when you ran the test case, the pass-fail results
appear in the Results and Artifacts pane. For results from a release other than the one you are
running Test Manager from, the release number appears in the name.

 Run Tests in Multiple Releases of MATLAB

6-85

Run Simulation Tests in Multiple Releases
Running a simulation test simulates the model in each release you select using the criteria you
specify in the test case.

1 Make sure that the releases have been added to your Test Manager preferences.
2 Create a test file, if necessary, and add a simulation test case template to it.
3 Select the test case.
4 Under System Under Test, enter the model you want to test.
5 Expand Simulation Setting and Release Overrides and, in the Select releases for

simulation drop-down menu, select the release options for the simulation.
6 Under Simulation Outputs, select the signals to log.
7 In the toolstrip, click Run.

The test runs, simulating for each release you selected. For each release, the pass-fail results
appear in the Results and Artifacts pane. For results from a release other than the one you are
running Test Manager from, the release number appears in the name.

6 Test Manager Test Cases

6-86

Assess Temporal Logic in Multiple Releases
You can run tests that contain logical and temporal assessments in multiple releases to test signal
logic for models created in an earlier release. You can also compare assessment results across
releases when you run the tests in multiple releases. For more information, see “Assess Temporal
Logic by Using Temporal Assessments” on page 3-92.

You can run these test case types with logical and temporal assessments:

• Baseline tests
• Equivalence tests
• Simulation tests

Run Tests with Logical and Temporal Assessments

To run tests logic with logical and temporal assessments in multiple releases:

1 Start MATLAB R2021b or later.
2 Open the Test Manager. For more information, see “Open the Test Manager”.
3 In the Test Manager, add the releases to your Test Manager preferences. For more information,

see “Add Releases Using Test Manager Preferences” on page 6-84.
4 Create a new test file with a baseline, equivalence, or simulation test case, or open an existing

one. For more information, see:

• “Create and Run a Baseline Test”
• “Create and Run a Back-to-Back Test” on page 6-43
• “Test a Simulation for Run-Time Errors” on page 6-18

5 In the Test Manager, specify your test case properties, including the system under test and other
properties that you want to apply. For more information, see “Specify Test Properties in the Test
Manager” on page 6-147.

6 Add a logical or temporal assessment to your test case. For more information, see “Assess
Temporal Logic by Using Temporal Assessments” on page 3-92 and “Logical and Temporal
Assessment Syntax” on page 3-106.

7 Select the releases to run the test in. In the Test Manager, select your test case. In System
Under Test, under Simulation Settings and Release Overrides, next to Select releases for
simulation, select the releases to run the test case in from the list.

If you are using a baseline or simulation test case, you can run the test in multiple releases in a
single run by selecting multiple releases from the list. If you are using an equivalence test case,
you can select one release under Simulation 1 and another release under Simulation 2. For
more information, see:

• “Run Baseline Tests in Multiple Releases” on page 6-84
• “Run Equivalence Tests in Multiple Releases” on page 6-85
• “Run Simulation Tests in Multiple Releases” on page 6-86

8 Run the test. In the Test Manager, click Run.

Evaluate Assessment Results

The Results and Artifacts pane displays the test results for each release you selected. The test
release appears in the name of each test result from a release other than the version you ran Test
Manager from.

 Run Tests in Multiple Releases of MATLAB

6-87

You can evaluate the assessment results independently from other pass-fail criteria. For example,
while a baseline test case might fail due to a failing baseline criteria, a logical or temporal
assessment in the test case might pass.

You can also examine detailed assessment signal behavior. For more information, see “View
Assessment Results” on page 3-95.

Collect Coverage in Multiple-Release Tests
To add coverage collection for multiple releases, you must have a Simulink Coverage license. Set up
your test as described in “Run Baseline Tests in Multiple Releases” on page 6-84, “Run Equivalence
Tests in Multiple Releases” on page 6-85, or “Run Simulation Tests in Multiple Releases” on page 6-
86. Before you capture the baseline or run the equivalence or simulation test, enable coverage
collection.

1 Click the test file that contains your test case. To collect coverage for test suites or test cases,
you must enable coverage at the test file level.

2 In the Coverage Settings section, select Record coverage for system under test, Record
coverage for referenced models, or both.

3 Select the types of coverage to collect under Coverage Metrics to collect.

After you run the test, the Results and Artifacts pane shows the pass-fail results for each release in
the test suite.

6 Test Manager Test Cases

6-88

To view the coverage results for a release, select its test case and expand the Coverage Results
section. The table lists the model, release, and the coverage percentages for the metrics you selected.

To view aggregated coverage results for the releases in your test, select the test suite that contains
the releases and expand the Aggregated Coverage Results section.

 Run Tests in Multiple Releases of MATLAB

6-89

To use the current release to add tests for missing coverage to an older release, click the row and
click Add Tests for Missing Coverage. You can also use coverage filters, generate reports, merge
results, import and export results, and scope coverage to linked requirements. For more information,
see “Collect Coverage in Tests” on page 6-124 and “Increase Test Coverage for a Model” on page 6-
136.

See Also
sltest.testmanager.getpref | sltest.testmanager.setpref

More About
• “Simulation Settings and Release Overrides” on page 6-150
• “Create and Run a Baseline Test”
• “Create and Run a Back-to-Back Test” on page 6-43
• “Test a Simulation for Run-Time Errors” on page 6-18
• “Assess Temporal Logic by Using Temporal Assessments” on page 3-92
• “Collect Coverage in Tests” on page 6-124

6 Test Manager Test Cases

6-90

Examine Test Failures and Modify Baselines
After you run a baseline test in the Test Manager, you can update the baseline. For example:

• If you changed your model, you can use the new simulation output as the baseline. You can
examine the failures that occurred because of the differences and update the baseline with part or
all of the new output. See “Examine Test Failure Signals and Update Baseline Test” on page 6-91.

• If your test plan changed and you expect different outputs, you can manually edit the time points.
See “Manually Update Signal Data in a Baseline” on page 6-93.

Examine Test Failure Signals and Update Baseline Test
Suppose that you run a test against a baseline and the result does not match the baseline, causing
test failure. It is possible that the newer simulation better represents your desired test results or that
some of the points of failure are your preferred results. You can examine the signal and failures in the
data inspector view in Test Manager and decide whether you want to update the baseline or sections
of the baseline.

Suppose that your model uses a new solver. When you run the test case, the results do not match,
causing the test to fail.

1 Open the test file that contains the baseline test case you want to run.
2 Select the test case and run it.
3 If the test fails, in the Results and Artifacts pane, expand the Baseline Criteria. Select a signal

that failed that you want to examine.

When you select the signal, the data inspector view opens. The top graph is the baseline
simulation signal overly. The bottom is the difference between those signals and the tolerance.
You can adjust tolerances in the pane in the lower-left corner of the Test Manager. This example
shows an absolute tolerance of .2.

 Examine Test Failures and Modify Baselines

6-91

4 To examine each failure, in the toolstrip, click Next Failure or Previous Failure. Each
contiguous set of failed signal comparison points makes up one region. Data cursors show the
bounds of each region.

6 Test Manager Test Cases

6-92

5 You can update the baseline data to use newer simulation results using the Update Baseline

 button.

• To update the entire signal, select Replace One Signal in Baseline File from the dropdown.
• To update only the data in the failure region, select Replace Signal Segment in Baseline

File from the dropdown.
• To replace all signal data in the baseline with the new data, select Use All Sim Output

Signals as Baseline from the dropdown.

Manually Update Signal Data in a Baseline
If your model changes such that you expect a different simulation output, you can update all or part
of the baseline signal data. If the baseline is a MAT-file, you can edit the data in the signal editor. If
the baseline is a Microsoft Excel file, you can edit the data in Excel.

 Examine Test Failures and Modify Baselines

6-93

To update signal data in a MAT-file baseline:

1 Open the test file that contains the baseline you want to edit.
2 Select the test case.
3 Under Baseline Criteria, select the baseline whose signal data you want to edit. Click Edit.
4 The signal editor opens. In the Scenarios and Signals pane, expand the data node.
5 Select the check box next to the signal whose data you want to edit.

Tip To see the time and data for points, display a data cursor and drag it along the signal.
6 Edit the signal data in the table, and then click Apply.
7 To update the baseline with the new expected output data, click Save.

To update baseline signal data in an Excel file:

6 Test Manager Test Cases

6-94

1 Open the Excel file that contains the baseline you want to edit.
2 Go to the sheet that contains the baseline. The sheet name corresponds to the baseline source

name in the Test Manager Baseline Criteria section.
3 Edit the signal data in the sheet, and then save the Excel file.

See Also

More About
• “Create and Edit Signal Data”
• “Inspect Simulation Data”
• “Compare Model Output to Baseline Data” on page 6-7

 Examine Test Failures and Modify Baselines

6-95

Create and Run Test Cases with Scripts
In this section...
“Create and Run a Baseline Test Case” on page 6-96
“Create and Run an Equivalence Test Case” on page 6-97
“Run a Test Case and Collect Coverage” on page 6-98
“Create and Run Test Case Iterations” on page 6-98

For a list of functions and objects in the Simulink Test programmatic interface, see “Test Scripts”.

Create and Run a Baseline Test Case
This example shows how to use sltest.testmanager functions, classes, and methods to automate
tests and generate reports. You can create a test case, edit the test case criteria, run the test case,
export simulation output, and generate results reports programmatically. The example compares the
simulation output of the model to a baseline.

% Open the model for this example
openExample('sldemo_absbrake');

% Create the test file, test suite, and test case structure
tf = sltest.testmanager.TestFile('API Test File');
ts = createTestSuite(tf,'API Test Suite');
tc = createTestCase(ts,'baseline','Baseline API Test Case');

% Remove the default test suite
tsDel = getTestSuiteByName(tf,'New Test Suite 1');
remove(tsDel);

% Assign the system under test to the test case
setProperty(tc,'Model','sldemo_absbrake');

% Capture the baseline criteria
baseline = captureBaselineCriteria(tc,'baseline_API.mat',true);

% Test a new model parameter by overriding it in the test case
% parameter set
ps = addParameterSet(tc,'Name','API Parameter Set');
po = addParameterOverride(ps,'m',55);

% Set the baseline criteria tolerance for one signal
sc = getSignalCriteria(baseline);
sc(1).AbsTol = 9;

% Run the test case and return an object with results data
ResultsObj = run(tc);

% Get the test case result and the Sim Output run dataset
tcr = getTestCaseResults(ResultsObj);
runDataset = getOutputRuns(tcr);

% Open the Test Manager so you can view the simulation
% output and comparison data
sltest.testmanager.view;

6 Test Manager Test Cases

6-96

% Generate a report from the results data
filePath = 'test_report.pdf';
sltest.testmanager.report(ResultsObj,filePath,...
 'Author','Test Engineer',...
 'IncludeSimulationSignalPlots',true,...
 'IncludeComparisonSignalPlots',true);

% Export the Sim Output run dataset
dataset = export(runDataset);

The test case fails because only one of the signal comparisons between the simulation output and the
baseline criteria is within tolerance. The results report is a PDF and opens when it is completed. For
more report generation settings, see the sltest.testmanager.report function reference page.

Create and Run an Equivalence Test Case
This example compares signal data between two simulations to test for equivalence.

% Open the model for this example
openExample('sldemo_absbrake');

% Create the test file, test suite, and test case structure
tf = sltest.testmanager.TestFile('API Test File');
ts = createTestSuite(tf,'API Test Suite');
tc = createTestCase(ts,'equivalence','Equivalence Test Case');

% Remove the default test suite
tsDel = getTestSuiteByName(tf,'New Test Suite 1');
remove(tsDel);

% Assign the system under test to the test case
% for Simulation 1 and Simulation 2
setProperty(tc,'Model','sldemo_absbrake','SimulationIndex',1);
setProperty(tc,'Model','sldemo_absbrake','SimulationIndex',2);

% Add a parameter override to Simulation 1 and 2
ps1 = addParameterSet(tc,'Name','Parameter Set 1','SimulationIndex',1);
po1 = addParameterOverride(ps1,'Rr',1.20);

ps2 = addParameterSet(tc,'Name','Parameter Set 2','SimulationIndex',2);
po2 = addParameterOverride(ps2,'Rr',1.24);

% Capture equivalence criteria
eq = captureEquivalenceCriteria(tc);

% Set the equivalence criteria tolerance for one signal
sc = getSignalCriteria(eq);
sc(1).AbsTol = 2.2;

% Run the test case and return an object with results data
ResultsObj = run(tc);

% Open the Test Manager so you can view the simulation
% output and comparison data
sltest.testmanager.view;

 Create and Run Test Cases with Scripts

6-97

In the Equivalence Criteria Result section of the Test Manager results, the yout.Ww signal passes
because of the tolerance value. The other signal comparisons do not pass, and the overall test case
fails.

Run a Test Case and Collect Coverage
This example shows how to use a simulation test case to collect coverage results. To collect coverage,
you need a Simulink Coverage license.

% Open the model for this example
openExample('sldemo_autotrans');

% Create the test file, test suite, and test case structure
tf = sltest.testmanager.TestFile('API Test File');
ts = createTestSuite(tf,'API Test Suite');
tc = createTestCase(ts,'simulation','Coverage Test Case');

% Remove the default test suite
tsDel = getTestSuiteByName(tf,'New Test Suite 1');
remove(tsDel);

% Assign the system under test to the test case
setProperty(tc,'Model','sldemo_autotrans');

% Turn on coverage settings at test-file level
cov = getCoverageSettings(tf);
cov.RecordCoverage = true;

% Enable MCDC and signal range coverage metrics
cov.MetricSettings = 'mr';

% Run the test case and return an object with results data
rs = run(tf);

% Get the coverage results
cr = getCoverageResults(rs);

% Open the Test Manager to view results
sltest.testmanager.view;

In the Results and Artifacts pane of the Test Manager, click on Results. You can view the
aggregated coverage results.

Create and Run Test Case Iterations
This example shows how to create test iterations. You can create table iterations programmatically
that appear in the Iterations section of a test case. The example creates a simulation test case and
assigns a Signal Editor scenario for each iteration.

% Open the model for this example
openExample('sldemo_autotrans');

% Create test file, test suite, and test case structure
tf = sltest.testmanager.TestFile('Iterations Test File');
ts = getTestSuites(tf);
tc = createTestCase(ts,'simulation','Simulation Iterations');

6 Test Manager Test Cases

6-98

% Specify model as system under test
setProperty(tc,'Model','sldemo_autotrans');

% Set up table iteration
% Create iteration object
testItr1 = sltestiteration;
% Set iteration settings
setTestParam(testItr1,'SignalEditorScenario','Passing Maneuver');
% Add the iteration to test case
addIteration(tc,testItr1);

% Set up another table iteration
% Create iteration object
testItr2 = sltestiteration;
% Set iteration settings
setTestParam(testItr2,'SignalEditorScenario','Coasting');
% Add the iteration to test case
addIteration(tc,testItr2);

% Run test case that contains iterations
results = run(tc);

% Get iteration results
tcResults = getTestCaseResults(results);
iterResults = getIterationResults(tcResults);

See Also

More About
• “Import Test Cases for Equivalence Testing” on page 5-19

 Create and Run Test Cases with Scripts

6-99

Test Models Using MATLAB-Based Simulink Tests
A MATLAB-based Simulink test is defined in a MATLAB code (.m) file that you create in MATLAB, and
then open, run, and view results in the Test Manager. The test file is a class definition file that inherits
from sltest.TestCase. The inheritance enables you to open the test file in the Test Manager. When
you open a MATLAB test file in the Test Manager, it appears and behaves the same as a test created
in the Test Manager, although with some limited functionality (see “Limitations of MATLAB- based
Tests” on page 6-103). In addition to using a MATLAB test in the Test Manager, you can use it at the
command line like any other unit test file.

Because these test files are text (.m) files, you can edit, compare to and merge with other .m test
files, and link from the file to requirements. In contrast, test files created in the Test Manager or by
using the Simulink Test API are saved as binary MLDATX files.

Classes and Methods
TestCase Class and Methods

The sltest.TestCase class and its methods work specifically with MATLAB tests. You can use
these methods in test files and at the command line, except for
sltest.TestCase.forInteractiveUse, which can only be used at the command line. In addition
to these methods, you can use the matlab.unittest.TestCase methods with MATLAB tests.

sltest.TestCase Class from which to inherit
loadSystem Loads model
simulate Simulate model
assumeSignalsMatch Assume two sets of data are equivalent
assertSignalsMatch Assert two sets of data are equivalent
fatalAssertSignalsMatch Fatal assert two sets of data are equivalent
verifySignalsMatch Verify two sets of data are equivalent
sltest.TestCase.forInteractiveUse Create test case for use at command line
createTemporaryFolder Create temporary folder that is deleted when test

case goes out of scope
createSimulationInput Creates Simulink.SimulationInput or

sltest.harness.SimulationInput object.

Test Harness Class

sltest.harness.SimulationInput creates an object that you can use to specify changes applied
to a test harness during simulation. In addition to using this class for MATLAB-based Simulink tests,
you can use it in other MATLAB code.

Test Runner Methods

These methods of matlab.unittest.TestRunner apply specifically to MATLAB-based Simulink
tests.

• addModelCoverage — enables model coverage collection using the test runner.

6 Test Manager Test Cases

6-100

• addSimulinkTestResults — pushes test results to the Simulink Test Manager.

Plugin Classes

These sltest.plugins classes enable functionality for MATLAB-based tests. In addition to these
methods, you can use other sltest.plugins classes with these tests. The plugins can be attached
to a matlab.unittest.TestRunner to enable functionality while running an sltest.TestCase
test.

sltest.plugins.MATLABTestCaseIntegrati
onPlugin

Enable integrating MATLAB test simulation and
test results with the Test Manager

sltest.plugins.ToTestManagerLog Enable writing text output to Test Manager
results Logged Signals pane of the Test
Manager

sltest.plugins.ModelCoveragePlugin Enable collecting model coverage

Creating a Baseline MATLAB-based Simulink Tests
To create a baseline MATLAB test:

1 Create a MATLAB code (.m) file that defines the test cases. You can launch the MATLAB Editor
from the command line, or from the Test Manager by using New > MATLAB-Based Simulink
Test (.m).

See “Author Class-Based Unit Tests in MATLAB”. The only difference for MATLAB tests is that the
class must inherit from sltest.TestCase, instead of from matlab.unittest.TestCase.

This sample MATLAB test file includes one test, which is defined in the testOne function. When
you run the test in the Test Manager, the test loads the model named
sltestMATLABBasedTestExample. It then sets the value of the gain2_var variable, and
simulates the model. Finally, the test compares model simulation output to the baseline data MAT
file.

classdef myTest < sltest.TestCase
 methods (Test)
 function testOne(testCase)
 testCase.loadSystem...
 ('sltestMATLABBasedTestExample');
 evalin('base','gain2_var = 2.01;');
 simOut = testCase.simulate...
 ('sltestMATLABBasedTestExample');
 testCase.verifySignalsMatch(simOut,'baselineOne.mat',...
 'AbsTol',0.015);
 end
 end
end

2 If you are using a test harness, replace the simOut line in the above MATLAB test file with

simOut = testCase.simulate('sltestMATLABBasedTestExample',...
 'WithHarness','sltestMATLABBasedTestExample_harness1');

or, to specify the stop the simulation time, replace simOut with

in = testCase.createSimulationInput('sltestMATLABBasedTestExample',...
 'WithHarness','sltestMATLABBasedTestExample_harness1');

 Test Models Using MATLAB-Based Simulink Tests

6-101

in.setModelParameter("StopTime","10")
simOut = testCase.simulate(in);

3 If a baseline data MAT-file does not already exist or if you need to update it, at the MATLAB
command line, use:

runtests(<test>,'GenerateBaselines',true)

For the sample file, <test> is ''myTest/testOne'.

When you generate baselines, the test begins running. It pauses to open a Simulation Data
Inspector report, and you are prompted at the MATLAB command line to review the baseline
data. When you approve the data, it saves the baseline data to a new MAT-file or updates the
existing MAT-file. Then, the test continues to run, but fails because the new or updated baseline
data is not included in the current run. Rerun the test using the runtests command to use the
new or updated baseline and produce a passing result. You can also rerun the test by using the
yellow rerun hyperlink at the command line.

4 Optionally, if you have a Simulink Coverage license, you can include coverage collection in your
test. See “Collect Coverage Using MATLAB-Based Simulink Tests” on page 6-108 for an example
and information on coverage collection.

5 Optionally, if you have a Requirements Toolbox license, you can add requirements. Open the Test
Manager and update the test file.

a Click Open > Open MATLAB-Based Simulink Test (.m) and select the test file. The test
file loads and its test hierarchy displays in the Test Browser pane. If you select the test file,
the Requirements and Test File Content panes appear in the Test Manager.

b Add requirements by expanding the Requirements section by clicking Add to open the
Outgoing Links Editor. See “Link to Requirements” on page 1-2 for information on adding
requirements.

6 To update the MATLAB code (.m) test file from the Test Manager, click the Open test in the
MATLAB Editor link.

7 After you edit the .m file and save your changes, or after adding coverage or requirements,
return to the Test Manager and click the synchronization button next to the test file in the
Test Browser pane.

8 Run the test, view the results, and create a test results report.

a Click Run to run the test.
b To view the results, expand the rows in the Results and Artifacts pane.
c To view coverage results, in the Results and Artifacts pane, select the Resultsitem and

expand the Aggregated Coverage section. See “Collect Coverage in Tests” on page 6-124
for information.

d Optionally, create a test results report. See “Generate Test Results Reports” on page 7-17.

Alternatively, instead of adding coverage (Step 4) and running the test (Step 8) in the Test Manager,
you can use these commands at the MATLAB command line to add coverage, run the test, and push
the results to the Test Manager. Then, when you open the Test Manager, the test results are
displayed.

suite = testsuite('myTests');
runner = testrunner('textoutput');
runner.addModelCoverage(...

6 Test Manager Test Cases

6-102

 "CollectMetrics",["MCDC","Condition"]);
runner.addSimulinkTestResults("ExportToFile",...
 "testmgr_results.mldatx");
runner.run(suite);

Linking to Requirements from a MATLAB-Based Simulink Test File

Note You must have Requirements Toolbox to include requirements links.

To add links to requirements from a file being edited in the MATLAB Editor, see “Requirements
Traceability for MATLAB Code Lines” (Requirements Toolbox). For MATLAB test files, you add links
using the same process. However, the text you select in the MATLAB code (.m) file determines the
type of link and the test to which it is added. If you select:

• Class definition line (e.g., classdef myClass < sltest.TestCase) — Adds a Verified By
link for the whole test file

• Text inside a test function — Adds a Verified By link for that function
• Text across multiple test functions — Adds a Verified By link for the first function in the

selection
• Any other text selected — Adds a Related To link for the selection

After you add requirements links, you can view the verification status in the Requirements Editor by
clicking Display > Verification Status. To update the status of a Verified By requirement, right-
click on the requirement and select Run Tests. See “Review Requirements Verification Status”
(Requirements Toolbox).

Links that you create in the MATLAB code (.m) file appear in the Requirements section of the Test
Manager. Linking to requirements from in the Test Manager works the same as described in “Link to
Requirements” on page 1-2.

When you have the Requirements Editor open and you click on an incoming link that is for a MATLAB
test, if you have a Simulink Test license, the Test Manager opens and goes to the associated test. If a
license is not available, the MATLAB Editor opens and goes to the line of code associated with that
requirement.

For a parameterized test, Requirements Toolbox does not support linking to individual parameterized
versions of the test. In your .m file, if you create a link from parameterized test to a requirement, the
link is associated with all versions of that test. In the Test Manager, if you create a link from a version
of a parameterized test to a requirement, the link is associated with all versions of that test.

Limitations of MATLAB- based Tests
MATLAB-based Simulink tests do not support:

• Test types other than baseline tests.
• Running tests in parallel.
• Running tests in multiple releases.
• Test tags and descriptions.

 Test Models Using MATLAB-Based Simulink Tests

6-103

• Callbacks. (However, while callbacks are not supported in the Test Manager for MATLAB-based
tests, you can use TestClassSetup and TestMethodSetup, or fixtures in your .m file to achieve
similar functionality. See “Write Setup and Teardown Code Using Classes”.)

• Logical and temporal assessments.

See Also
addSimulinkTestResults | addModelCoverage | sltest.TestCase |
matlab.unittest.TestCase | matlab.unittest.TestRunner

Related Examples
• “Using MATLAB-Based Simulink Tests in the Test Manager” on page 6-105
• “Collect Coverage Using MATLAB-Based Simulink Tests” on page 6-108
• “Test Models Using MATLAB Unit Test” on page 6-176
• “Link to Requirements” on page 1-2
• “Requirements Traceability for MATLAB Code Lines” (Requirements Toolbox)
• “Link to Test Cases from Requirements” (Requirements Toolbox)

6 Test Manager Test Cases

6-104

Using MATLAB-Based Simulink Tests in the Test Manager
This example shows how to create a MATLAB®-based Simulink® test, generate a baseline, and load,
run, and view test results in the Test Manager. When you load a MATLAB-based Simulink test case .m
file into the Test Manager, the test case appears and behaves the same as any test case created
directly in the Test Manager.

This example using internal test harness sltestMATLABBasedTestExample_harnrss verifies the
sltestMATLABBasedTestExample model against a generated baseline.

Baseline Test Class Definition File

The class definition file, BaselineTest.m, has already been created and is provided with this
example.

The test case file, BaselineTest.m, is derived from sltest.TestCase, which in turn is derived
from matlab.unittest.TestCase. All of the matlab.unittest.TestCase methods are also
available as a part of sltest.TestCase.

Baseline Test File Contents

The class definition file, BaselineTest.m, contains:

classdef BaselineTest < sltest.TestCase

 methods (Test)
 function testOne(testCase)
 testCase.loadSystem('sltestMATLABBasedTestExample');
 evalin('base','gain2_var = 2.01;');
 simOut = testCase.simulate('sltestMATLABBasedTestExample',...
 'WithHarness','sltestMATLAbBasedTestExample_harness');
 testCase.verifySignalsMatch(simOut,'baseline1.mat','AbsTol',0.015);
 end
 end

end

The file includes:

• Inheritance from sltest.TestCase.
• A test function named testOne, which is in a methods block that has the Test attribute.

The testOne function:

• Uses the testCase.loadSystem method to load the sltestMATLABBasedTestExample model.
• Changes the value of the gain2_var in the model to 2.01.
• Uses the testCase.simulate method to simulate the model with the harness.
• Uses the testCase.verifySignalsMatch method to compare the output of simulate,

simOut, to the baseline data MAT-file named baseline1.mat. It also sets an absolute tolerance.
If you remove the tolerance setting from the file before running the test, the test fails because the
value of gain2_var was changed from its original value in the model.

 Using MATLAB-Based Simulink Tests in the Test Manager

6-105

Baseline Data File

The baseline data file, baseline1.mat, has already been generated and is provided with this
example. The baseline data file was created using this process:

1. Use runtests('BaselineTest/testOne','GenerateBaselines',true).

2. After the baseline test runs, a Simulation Data Inspection report shows the output from the signals.
View the Actual Results in the report and approve the baseline data. The data is saved in a MAT-file,
which for this example is named baseline1.mat.

Open the MATLAB-based Simulink Test in the Test Manager

1. Open the Test Manager.

sltestmgr

2. In the Test Manager, click Open and select Open MATLAB-based Simulink Test (.m).

3. In the Open File dialog box, select BaselineTest.m.

The Test Manager populates the Test Browser with testOne from the BaselineTest.m file.

Run and Visualize the Results in the Test Manager

1. Click Run to execute the test.

2. After the test completes, expand all rows in the Results and Artifacts pane. Notice that testOne
passes.

6 Test Manager Test Cases

6-106

3. To view the data comparison, select Out2:1 under testOne > Simulation Output Comparison
Results. The simulation and baseline signals match within the specified tolerance.

 Using MATLAB-Based Simulink Tests in the Test Manager

6-107

Collect Coverage Using MATLAB-Based Simulink Tests
This example shows how to use a MATLAB®-based Simulink® test to collect coverage on a model
with test harness, and use the MATLAB Test Framework to populate the results in the Test Manager.
MATLAB-based Simulink tests are .m file test case class definitions that inherit from
sltest.TestCase.

MATLAB-Based Simulink Test File

The MATLAB-based Simulink test file, TestHarnessWithModelCoverage.m, has been created and
is provided with this example. The test file contains two test functions. Each one has a harness model
to drive input data to test the subsystem TestHarnessWithModelCoverage/Subsystem1 and
compare with corresponding baseline. This test uses a Simulink.SimulationOutput object when
simulating the model.

classdef TestHarnessWithModelCoverage < sltest.TestCase

 methods (Test)
 function testOne(testCase)
 in = testCase.createSimulationInput('simpleSwitchWithSubsystemIn',...
 'WithHarness','simpleSwitchWithSubsystemIn_Harness1');
 simOut = testCase.simulate(in);
 testCase.verifySignalsMatch(simOut,'baselineOne.mat');
 end
 function testTwo(testCase)
 in = testCase.createSimulationInput('simpleSwitchWithSubsystemIn',...
 'WithHarness','simpleSwitchWithSubsystemIn_Harness2');
 simOut = testCase.simulate(in);
 testCase.verifySignalsMatch(simOut,'baselineTwo.mat');
 end
 end

end

Create a TestRunner and Test Suite

Create a TestRunner to run the sltest_ratelim model.

import matlab.unittest.TestRunner;
runner = TestRunner.withTextOutput;

Create a TestSuite to use with the TestRunner.

suite = testsuite('TestHarnessWithModelCoverage');

Configure the Test Runner

Use plugin methods to configure the TestRunner to add test results from an sltest.TestCase to
the Test Manager. Add the TestRunnerPlugin to the TestRunner.

import sltest.plugins.MATLABTestCaseIntegrationPlugin;
runner.addPlugin(MATLABTestCaseIntegrationPlugin);

The DiagnosticsOutputPlugin and the ToTestManagerLog stream the diagnostics from an
sltest.TestCase run to the logs of TestCaseResults in the Test Manager. The diagnostics
include passing diagnostics for tests that pass. Add the DiagnosticsOutputPlugin and
ToTestManagerLog to the TestRunner.

6 Test Manager Test Cases

6-108

import sltest.plugins.ToTestManagerLog;
import matlab.unittest.plugins.DiagnosticsOutputPlugin;
streamOutput = ToTestManagerLog();
diagnosticsOutputPlugin = DiagnosticsOutputPlugin...
 (streamOutput,'IncludingPassingDiagnostics',true);
runner.addPlugin(diagnosticsOutputPlugin);

Configure Coverage Collection for a Simulink Model

Models in an sltest.TestCase that are simulated using the simulate method can collect
coverage. Use the ModelCoveragePlugin to configure coverage metrics collection. This example
collects MCDC coverage. Add the ModelCoveragePlugin to the TestRunner.

import sltest.plugins.coverage.CoverageMetrics;
import sltest.plugins.ModelCoveragePlugin;
mcdcMetrics = CoverageMetrics('MCDC',true);
runner.addPlugin(ModelCoveragePlugin('Collecting',mcdcMetrics));

Collect and Add Coverage and Test Results to the Test Manager

Now that the TestRunner is fully configured, use the run function to collect coverage and add the
coverage and test results to the Test Manager.

run(runner,suite);

Setting up ResultSetFixture
Done setting up ResultSetFixture

Running TestHarnessWithModelCoverage
..
Done TestHarnessWithModelCoverage

Coverage Report for simpleSwitchWithSubsystemIn/Subsystem1
 C:\TEMP\Bdoc22a_1891349_13144\ibC86E06\30\tpdbd4ed6b_306d_4abd_828c_703a0fdc64e0.html
Tearing down ResultSetFixture
Done tearing down ResultSetFixture

run also generates a report that includes cumulative coverage for the test suite that was run. Use the
Coverage Report for sltest_ratelim link to view the report.

Open the Test Manager

sltestmgr

Select the Results and Artifacts pane and expand the Results and BaselineTestWithCoverage
rows.

 Collect Coverage Using MATLAB-Based Simulink Tests

6-109

Select the testOne row.

The Coverage Results section shows the coverage collected for sltest_ratelim from testOne.

Select the testTwo row.

6 Test Manager Test Cases

6-110

The Coverage Results section shows the coverage collected for sltest_ratelim from testTwo.

Select the BaselineTestWithCoverage row.

 Collect Coverage Using MATLAB-Based Simulink Tests

6-111

The Aggregated Coverage Results section shows the aggregation of the coverage collected for
sltest_ratelim from testOne and testTwo. The aggregated results show full coverage for the
specified coverage metrics.

6 Test Manager Test Cases

6-112

Test Iterations
In this section...
“Create Table Iterations” on page 6-113
“Create Scripted Iterations” on page 6-116
“Sweep Through a Set of Parameters” on page 6-119

You can run the same test case with different data or configuration sets by using test case iterations.
Iterations can use different:

• Parameters
• External inputs
• Configuration sets
• Signal Editor scenarios
• Test Sequence scenarios
• Baseline data
• Simulation modes

Set up iterations in the Iterations section of a test case. You can create iterations using the table in
the Iterations section of the Test Manager or by using a script.

To use Test Sequence scenarios in iterations, first, in the Inputs section, set Test Sequence Block
to the block that contains the scenarios. Then, select a scenario from Override with Scenario to use
that scenario as the default for each iteration. If you don't select a scenario, the active scenario in the
Test Sequence block is used as the default. Use the Test Sequence Scenario column in the table to
change the scenario for an iteration. For more information, see “Use Test Sequence Scenarios in the
Test Sequence Editor and Test Manager” on page 3-58.

To use different simulation modes, such as normal and software-in-the-loop (SIL), for a baseline or
simulation test, first, set up the test case. Then, in the Iterations table, click Auto Generate. In the
Auto Generate Iterations dialog box, select Simulation Modes and one or more other options. For
each option, the number of iterations created is doubled, one for the mode of the model and one for
SIL mode.

If the test collects coverage using Simulink Coverage, the same coverage settings apply to all
iterations in the test case.

Whether you use table or scripted iterations, you can see the iterations in the test case by clicking the
Show Iterations button.

Create Table Iterations
Table Iterations provide a quick way to add iterations based items in your model or test case. To
create iterations with the table, first make the appropriate columns visible:

1 Expand the Iterations > Table Iterations section.
2 In the table, add or remove columns by clicking the button and selecting items in the list. For

example, to select display parameter and configuration sets, select the Parameter Set and
Configuration Set items.

 Test Iterations

6-113

Add Iterations Manually

1 To manually add iterations, click Add. The table displays a new iteration row.
2 Assign an iteration name and select items for the iteration. For example, this test case has four

iterations. Each iteration uses a different combination of external input and baseline data.

Generate Table Iterations

You can also automatically generate iterations from data in your test case and model:

1 Click the Auto Generate button.
2 Select items for which to generate iterations.

For Test Sequence scenarios, an iteration is generated for each scenario for the block you
selected in the Test Sequence Block in the Inputs section.

If you select multiple items, iterations are created in sequential pairings. For example:

• The model sldemo_autotrans has a Signal Editor block with four signal scenarios, labeled
Coasting, Gradual_Acceleration, Hard_braking, and Passing_Maneuver, each of which has
Throttle and Brake signals. To open this model, type openExample('sldemo_autotrans')
at the command line. To view the Signal Editor, double-click the ManeuversGUI block to open
the Block Parameters dialog. Then, click the Signal Editor launch button under Signal
Properties.

• The test case has three parameter sets, labeled P1, P2, and P3.
• Automatically generating iterations from Signal Editor scenarios and parameter sets results

in three iterations. The iterations are limited by the three parameter sets. Each iteration
contains one Signal Editor scenario and one parameter set. The Signal Editor scenario and
parameter set are matched in the order that they are listed in the Signal Editor block and
parameter set section.

6 Test Manager Test Cases

6-114

3 Specify an optional naming rule for the iterations. In the Iteration naming rule box, enter the
rule using:

• The name of each setting you want to use in the name, with spaces removed
• An underscore or space to separate each setting

For example, if you want to include the name of the parameter set, configuration set, and
baseline file name, enter ParameterSet_ConfigurationSet_Baseline.

Section Option Purpose
Signal Editor scenario Applies to the Inputs section of a simulation,

baseline, or equivalence test case, for the
specified Signal Editor Scenario. Each Signal
Editor scenario is used to generate an iteration.

 Test Iterations

6-115

Section Option Purpose
Parameter Set Applies to the Parameter Overrides section of a

simulation, baseline, or equivalence test case.
Each parameter override set is used to generate
an iteration.

External Input Applies to the Inputs section of a simulation,
baseline, or equivalence test case, for the
specified External Inputs sets. Each external
input set is used to generate an iteration.

Configuration Set Applies to the Configuration Setting Overrides
section of a simulation, baseline, or equivalence
test case. Each iteration uses the configuration
setting specified.

Logged Signal Set Applies to the Logging section of a simulation,
baseline, or equivalence test case. Each logged
signal set is used to generate an iteration.

Baseline Applies only to baseline test case types,
specifically to the Baseline Criteria section of a
baseline test case. Each baseline criteria set is
used to generate an iteration.

Test Sequence scenario Applies to the Inputs section of a simulation,
baseline, or equivalence test case, for the
specified Test Sequence Block. Each Test
Sequence scenario is used to generate an
iteration.

Simulation Modes Applies to the Iterations table section of a
simulation or baseline test case. A iteration for
the current simulation mode of the model and a
SIL iteration are created for each other test
setting selected in the Auto Generate Iterations
dialog box.

Simulation 1 or 2 Applies only to equivalence test case types. At the
top of the Auto Generate Reports dialog box,
there is a menu for Simulation 1 or Simulation
2. These sections correspond to the two
simulation sections within the equivalence test
case.

Create Scripted Iterations
You can run a custom set of iterations using a script in the Scripted Iterations section. For example,
you can define parameter sets or customize iteration order by using a custom iteration. Scripted
iterations are generated at run time when a test executes.

6 Test Manager Test Cases

6-116

Iteration Script Components

An iteration script must contain certain components. The most basic iteration script contains three
elements:

1 An iteration object, created using sltestiteration.
2 An iteration setting, set using setTestParam.
3 The iteration registration, added using addIteration.

For example, this script creates an iteration that runs one signal scenario from a Signal Editor block.

%% Iterate Using a Signal Editor Scenario

% Set up a new iteration object
testItr = sltestiteration;

% Set iteration setting using Signal Editor scenario
setTestParam(testItr,'SignalEditorScenario',...
 sltest_signalEditorScenarios{1});

% Add the iteration to run in this test case
% The predefined sltest_testCase variable is used here
addIteration(sltest_testCase,testItr);

For more information about the test iteration class, see sltest.testmanager.TestIteration.
You can iterate over multiple items, such as Signal Editor or Test Sequence scenarios. You can iterate
over all Signal Editor or Test Sequence scenarios in the block by putting the basic iteration script in a
loop:
%% Iterate Over All Signal Editor Scenarios

% Determine the number of possible iterations
numSteps = length(sltest_signalEditorScenarios);

 Test Iterations

6-117

% Create each iteration
for k = 1 : numSteps
 % Set up a new iteration object
 testItr = sltestiteration;

 % Set iteration settings
 setTestParam(testItr,'SignalEditorScenario',...
 sltest_signalEditorScenarios{k});

 % Add the iteration to run in this test case
 % You can pass in an optional iteration name
 addIteration(sltest_testCase,testItr);
end

% Reset the path
rmpath(fullfile(matlabroot,'examples',...
 'simulink_automotive','main'));

Predefined Variables

You can use predefined variables to write iterations scripts. To see the list of predefined variables in
the Test Manager, expand the Help on creating test iterations section. You write the iterations
script in the script box within the Scripted Iterations section. The script box is a functional
workspace, which means the MATLAB base workspace cannot access information from the script box.
If you define variables in the script box, then other workspaces cannot use the variable.

The predefined variables are:

• sltest_bdroot — Model simulated by the test case, defined as a string
• sltest_sut — The System Under Test, defined as a string
• sltest_isharness — true if sltest_bdroot is a harness model, defined as a logical
• sltest_externalInputs — Name of external inputs, defined as a cell array of strings
• sltest_parameterSets — Name of parameter override sets, defined as a cell array of strings
• sltest_configSets — Name of configuration settings, defined as a cell array of strings
• sltest_signalEditorScenarios — Name of signal editor scenarios, defined as a 2-D cell

array of character vectors.
• sltest_signalBuilderGroups — Name of signal builder groups, defined as a 2-D cell array of

character vectors.
• sltest_loggedSignalSets — Name of logged signal sets, defined as a 2-D cell array of

character vectors.
• sltest_testSequenceScenarios — — Name of test sequence scenarios, defined as a 2-D cell

array of character vectors.
• sltest_tableIterations — Iteration objects created in the iterations table, defined as a cell

array of sltest.testmanager.TestIteration objects
• sltest_testCase — Current test case object, defined as an sltest.testmanager.TestCase

object

Scripted Iteration Templates

You can quickly generate iterations for your test case using templates for Signal Editor scenarios,
parameter sets, external inputs, configuration sets, and baseline sets, if you are using a baseline test
case. Scripted iteration templates follow lockstep ordering and pairing of test settings. For more
information about lockstep ordering, see “Create Table Iterations” on page 6-113.

For example, if you want to run all signal editor scenarios in a scripted iteration:

6 Test Manager Test Cases

6-118

1 Click Iteration Templates.
2 Select the test case settings you want to iterate through. Click OK.

The script is generated and added to the script box below any existing scripts.
3 To generate a table that gives a preview of the iterations that execute when you run the test case,

click Show Iterations.

Sweep Through a Set of Parameters
Scripted iterations can be used to test a model by sweeping through a set of parameters. You can use
this script to try different values for the model workspace parameter Iei and model parameter
UpperSaturationLimit in the model sltestCar. Add the script under Iterations > Scripted
Iterations.

%% Iterate over Iei parameter

% Set up the parameter values to sweep over
IeiValues = [0.021,0.022,0.022,0.023];
UprSatValues = [2000,3000,4000,5000];
numSteps = length(IeiValues);

% Create each iteration
for k = 1 : numSteps
 % Set up a new iteration object
 testItr = sltestiteration;

 % Set value of lei (parameter in model workspace)
 setVariable(testItr,'Name','Iei','Source','model workspace',...
 'Value',IeiValues(k));

 % Set value of UpperSaturationLimit model parameter
 testItr.setModelParam('sltestCar/Engine/Integrator',...
 'UpperSaturationLimit',UprSatValues(k));

 % Add the iteration to run in this test case
 addIteration(sltest_testCase,testItr);
end

After you add the script, click Show Iterations. You can see the iterations that the script created.

 Test Iterations

6-119

Running the test generates a result for each iteration.

See Also
sltest.testmanager.TestIteration | setModelParam

Related Examples
• “Capture Baseline Data from Iterations” on page 6-121
• “Create and Run Test Cases with Scripts” on page 6-96
• “Programmatically Create and Run Test Sequence Scenarios” on page 3-55
• “Use Test Sequence Scenarios in the Test Sequence Editor and Test Manager” on page 3-58

6 Test Manager Test Cases

6-120

Capture Baseline Data from Iterations
This example shows how to create a baseline test by capturing data from a test case with table
iterations. You create the iterations from Signal Editor scenarios in the model. Before running the
example, navigate to a writable folder on the MATLAB® path.

1. Open the model. At the command line, enter

Model = 'sltestCar';
open_system(Model);

2. Open the Test Manager.

3. Create a test file. In the Test Manager, click Test File from Model from the New dropdown.

4. Specify the test file.

1 Enter sltestCar as the Model.
2 Enter a test file name or full path in Location.
3 Select Baseline as the Test Type.

5. Select the test case. Expand the test file and select the sltestCar/Inputs test case.

6. Select the signals for the baseline data:

1 In the Simulation Outputs section, click Add.
2 In the model canvas, select the output torque signal and in the Connect dialog, check the box

for that signal. Select the vehicle speed signal and check its box in the dialog.
3 In the Test Manager message dialog box, click Done.

 Capture Baseline Data from Iterations

6-121

4 The signals appear in the Logged Signals table.

7. View iterations for the test case:

Expand the Iterations and Table Iterations sections. The iterations for the selected test case
automatically appear. The iterations correspond to the four Signal Editor scenarios.

8. Capture baseline data for the iterations:

1 In the Baseline Criteria section, click the arrow next to Capture.
2 Select MAT as the File format.
3 Specify the location to save the baseline data files in the File field.
4 Select Capture Baselines for Iterations.
5 Click Capture.

The model simulates for all Signal Editor scenarios. The baseline data for output_torque and
vehicle_speed are captured in four MAT files. Also, each baseline data set is added to its
corresponding iterations in the table.

6 Test Manager Test Cases

6-122

 Capture Baseline Data from Iterations

6-123

Collect Coverage in Tests
In this section...
“Set Up Coverage Collection Using the Test Manager” on page 6-124
“View Coverage Results in the Test Manager” on page 6-126
“Add Tests for Missing Coverage” on page 6-128
“Coverage Filtering Using the Test Manager” on page 6-129

Coverage refers to determining the testing completeness of models and generated code by analyzing
how much of the model has been exercised. To collect coverage using the Simulink Test Test Manager
or sltest.testmanager.CoverageSettings, you must have Simulink Coverage installed.
Although you can set up and run test cases using only Simulink Coverage, Simulink Test provides
additional test creation and test management features. For tests with coverage collection turned on,
the Test Manager includes the coverage of each metric you choose to collect in the results. If you
have Requirements Toolbox installed, you can also use the Test Manager to verify that coverage
results are traced to specific requirements.

Note Coverage is supported for Model Reference blocks, atomic Subsystem blocks, and top-level
models configured for SIL or PIL. Coverage is not supported for Software-in-the-Loop (SIL) or
Processor-in-the-Loop (PIL) created from subsystems.

For information on considerations when collecting coverage in a test harness, see Test Harness
Considerations in “Test Harness and Model Relationship” on page 2-2.

Set Up Coverage Collection Using the Test Manager
In the Test Manager, you can enable coverage and select the coverage metrics at the test file level.
Test suites and test cases inherit the coverage settings from the test file. However, you can turn off
coverage collection for individual test suites and test cases.

Note The Test Manager inherits all coverage settings in the Configuration Parameters for the model
used in the test case. Coverage settings you specify in the Test Manager override the Configuration
Parameter settings when that test case runs.

To set up the Test Manager to include coverage collection:

1 Create a test file and set up a test case for your model.
2 Select the test file and expand the Coverage Settings section. Under Coverage to Collect,

select Record coverage for system under test to turn on coverage collection for the model
specified as the System Under Test in each test case. Select Record coverage for referenced
models to collect coverage for models that referenced from within the specified system under
test. The selected coverage settings propagate from the test file to the test suites and test cases
in the test file.

6 Test Manager Test Cases

6-124

3 Optionally, to add or remove existing coverage filter files, click Add or Remove, respectively, in
the Coverage Filters section and select the filter file. More than one filter file can be applied at
the same time.

4 Select the coverage metrics to collect. For information on metrics, see “Types of Model
Coverage” (Simulink Coverage) and “Model Objects That Receive Coverage” (Simulink
Coverage).

5 Run the test. Coverage is collected for the test suites and test cases in the test file.

To remove individual test suites or test cases from collecting coverage data, select the test suite or
test case and change its coverage settings.

 Collect Coverage in Tests

6-125

View Coverage Results in the Test Manager
View Aggregated Coverage Results and Metrics

After you collect coverage, use the Results and Artifacts pane in the Test Manager to view the
results. Coverage results are reported in results sets. Select a Results item in the pane and expand
the Aggregated Coverage Results section. The coverage percentage is shown for each metric and
the colors summarize the coverage results.

• Dark blue — Satisfied coverage
• Red — Unsatisfied coverage
• Light blue — Justified coverage

To aggregate results from different test files into a single result set, select the separate results in the
Results and Artifacts list. Then, from the context menu, select Merge Coverage Results. A results
set that contains the combined coverage results appears in the list.

Scoping Coverage for Requirements-Based Tests

For requirements-based design and testing, such as for compliance to DO-178B, enable Scope
coverage results to linked requirements to check that your model design is executing the
requirements and that the tests are verifying those requirements. Both Simulink Coverage and
Requirements Toolbox licenses are required. This option is available only if the results set contains
more than one simulation, such as multiple test cases or iterations.

When the Scope coverage results to linked requirements check box is selected, coverage results
include only tests that are directly linked to requirements and are explicitly tested. The aggregated
results update automatically without having to resimulate the model. If you have tests that touch a
model component but are not directly linked to a requirement, your aggregated coverage results
percentages might decrease when you enable scoping. To obtain 100% coverage to your
requirements, you might need to update your tests, add requirements links, or justify or exclude some
items from coverage.

6 Test Manager Test Cases

6-126

Trace Coverage Results to the Model

To navigate from the test coverage results in the Test Manager to the model, click the model name in
the Aggregated Coverage Results table.

The model opens, and its Coverage Report opens in the Coverage Details pane of the model window.
In this sample model, the model elements are red because they have less than 100% coverage.

Point to a model element to see a summary of its metrics and block execution.

Click a model element to scroll to its detailed coverage results information in the Coverage Details
pane.

 Collect Coverage in Tests

6-127

Create a Coverage Report

To create a report of the coverage for a model, click the arrow in the Report column of the
Aggregated Coverage Results table.

Add Tests for Missing Coverage
If you have a Simulink Design Verifier license, you can generate additional test cases to increase the
coverage in your models.

In the Test Manager,

1 In the Test Manager, select the Results and Artifacts pane.
2 Select the Results item for which you want to collect more coverage.
3 In the right pane, in the Aggregated Coverage Results section, select the line with incomplete

coverage in the table.
4 At the bottom of the Aggregated Coverage Results section, click Add Tests for Missing

Coverage.
5 In the Add Test for Missing Coverage dialog box,

• Harness — Select whether to use the existing harness or create a new harness
• Source — Select the source of the inputs to the harness. If you use an existing harness, the

Source field is read only.
• Test Case — Select whether to use the existing test case or create a new test case. If you

create a new harness, the only option is to use a new test case.

6 Test Manager Test Cases

6-128

• Test Type — Select the type of test to use for the new test case. This field is displayed if you
select to create either a new harness or a new test case.

• Test File — Select whether to use the existing test file or create a new test file. This field is
displayed if you select to create either a new harness or a new test case.

• Location — If you select to create a new test file, specify the path and name of the test file.
6 Click OK to generate test cases that add the missing coverage.
7 If you created a new test case or new harness, in the Test Browser pane, drag and drop the test

case into the test suite that contains the original test case.
8 Rerun the test suite.

For a complete example of how to increase test coverage in the Test Manager, see “Increase Test
Coverage for a Model” on page 6-136.

Alternatively, you can create and use tests to increase coverage programmatically by using
sltest.testmanager.addTestsForMissingCoverage and
sltest.testmanager.TestOptions.

Coverage Filtering Using the Test Manager
Coverage filter rules specify one or more model objects or lines of generated code to exclude from
coverage collection or for which you want to justify the coverage results. A set of coverage filter rules
is contained in a filter file, which can be applied to the model or code being tested. You can apply
more than one filter file to a test and also, reuse filter files for different models. When you apply a
new or updated filter, the aggregated coverage results, which are shown for a result set, update
automatically. You do not have to resimulate your model. For more information, see “Coverage
Filtering” (Simulink Coverage).

To view the filtered coverage results, select a result set (that is, a Results item) in the Results and
Artifacts pane.

From the Test Manager, you can:

• Add or remove an existing coverage filter file — In the Test Browser pane, select the test file and
expand the Coverage Settings section. Click Add or Remove at the bottom of the Coverage
Filters or Applied Coverage Filters table and select the coverage filter file to add or remove,
respectively. More than one coverage filter file can be applied to the coverage results.

• Edit or create a filter file, define a filter rule, and justify or exclude coverage — From a Coverage
Report or the Coverage Details pane of a model, open the Simulink Coverage Filter Editor by
clicking on a justify icon or a Justify or Exclude link. When the Filter Editor is open, the
Test Manager is locked. When you close the Filter Editor, the Test Manager is enabled and the
results and applied filters list are updated with your changes. For information on using the Filter
Editor, see “Creating and Using Coverage Filters” (Simulink Coverage) and “Create, Edit, and
View Coverage Filter Rules” (Simulink Coverage).

• Append currently applied coverage filters to the test file — Click Update Test File.
• View coverage results — Select a Results item in the Results and Artifacts pane and expand the

Aggregated Coverage Results section.

For more information on coverage filters, rules, and files, see the Coverage Filtering topics in
“Analyze Coverage and View Results” (Simulink Coverage).

 Collect Coverage in Tests

6-129

See Also
sltest.testmanager.CoverageSettings |
sltest.testmanager.addTestsForMissingCoverage | sltest.testmanager.TestOptions

More About
• “Analyze Coverage and View Results” (Simulink Coverage)
• “Model Objects That Receive Coverage” (Simulink Coverage)
• “Perform Functional Testing and Analyze Test Coverage” on page 10-9
• “Test Coverage for Requirements-Based Testing” on page 6-131
• “Assess Coverage Results from Requirements-Based Tests” (Simulink Coverage)
• “Trace Coverage Results to Requirements” (Simulink Coverage)
• “Requirements-Based Testing” (Requirements Toolbox)
• “Add Tests for Missing Coverage” on page 7-29

6 Test Manager Test Cases

6-130

Test Coverage for Requirements-Based Testing
This example shows how to collect test coverage for a model that implements requirements.
Coverage refers to determining the testing completeness by analyzing how much of the model logic is
exercised. For requirements-based testing, coverage results can be scoped to linked requirements.
With this scoping you can assess if each model element is covered by the intended test case.

The example shows how scoping coverage results to linked requirements can reveal both inadequate
requirement linking and testing gaps. It also shows how to increase the coverage.

The model in this example is cruiseControlRBTCovExample, which represents a cruise control
system. This model implements and is linked to requirements. A test file has already been created for
this example.

Open the Cruise Control Model

cruiseControlRBTCovExample

 Test Coverage for Requirements-Based Testing

6-131

View the Linked Requirements

The requirements for this cruise control system have been captured in the Requirements Editor. To
view the requirements, use slreq.open('cruiseControlRBTCovReqs.slreqx').

Open the Test Manager and Test File

Use sltestmgr to open the Test Manager.

Click Open and select cruiseControlRBTCovTests.mldatx. The tests have been written to verify
that the model behavior meets the specified requirements. They have also been set up to record
Decision and Condition coverage. Expand Coverage Settings to see the selected metrics.

Each test case verifies and is linked to a requirement. For example, the Throttle Test verifies the
THROTTLE requirement. This requirement specifies that the throttle is applied smoothly if the speed
differs from the target. The test verifies this behavior using a logical assessment, which checks that
the throttle rate of change is between -1 and 1 radians per second, as defined in the requirement
description.

Run the Test and View Coverage Results

Run the test.

Click on Results in the Results and Artifacts pane when the test finishes running. Note that the tests
pass and that 100% aggregated coverage is reported.

6 Test Manager Test Cases

6-132

Turn on Scoping the Test Results to Linked Requirements

Click the top-level Results in the Results and Artifacts pane. Then, in the Aggregated Coverage
Results pane, click the Scope coverage results to linked requirements check box.
Scoping the results means that each test only contributes coverage for the corresponding model
elements that implement the requirement verified by that test. Scoping checks that model elements
are covered by the intended test cases. The coverage results, which update automatically, now show
aggregated coverage for Decision and Execution at 92% and 76%, respectively.

View the Coverage Results in the Model

Click on the model name in the Analyzed Model column to highlight the coverage results in the model
and display the Coverage Report details.

In the model, if the Requirements table is not shown below the model, open it by clicking the
Perspectives views in the lower right corner of the model canvas and then, clicking Requirements.

Open the Controller subsystem. Blocks that do not have 100% coverage appear in red. Two sets of
Constant and Sum blocks are not linked to requirements and were never executed.

 Test Coverage for Requirements-Based Testing

6-133

Link Blocks to Requirements

In this case, the missing coverage indicates insufficient requirements linking. These Constant and
Sum blocks are necessary for implementing the INCREMENT and DECREMENT requirements and
should be linked to the appropriate requirements.

In the table in the Requirements pane, expand cruiseControlRbtCovReqs. Right-click on the
upper Constant block and select Requirements > Link to Selection in Requirements Browser.
Then, click on the INCREMENT requirement in the Requirements table. Repeat this for the upper
Sum block.

For the lower Constant and Sum blocks, repeat the linking steps, but link to the DECREMENT
requirement.

Increase Coverage from a Specific Test

Open the PI Controller and click on the Discrete-Time Integrator block. The Coverage Details show
that the true decision for the upper limit was executed by the Increment Test (T4), rather than the
Throttle Test (T6). Since the block is part of the implementation of the THROTTLE requirement, it
should have been tested by the Throttle Test, which verifies the THROTTLE requirement. The
Increment Test does not verify this requirement and does not contribute coverage for this block when
the Scope model coverage to linked requirements setting is enabled.

To resolve the missing coverage for this block, the Throttle Test needs to be updated to exercise the
Discrete-Time Integrator block more.

In the Test Browser pane of the Test Manager, select Throttle Test. Under Inputs, select
td_throttle_updated.mat as the External Inputs file. This updated input throttle data file has

6 Test Manager Test Cases

6-134

some additional seconds of test data, which increase the target speed more aggressively while
maintaining the actual speed.

Select cruiseControlRBTCovTests in the Test Browser pane and rerun the test. Click the Scope
coverage results to linked requirements check box. The coverage results show 100%
coverage, which indicates that the tests adequately execute the model.

Revised Test Reveals an Issue in the Design

The revised Throttle Test now fails verification. The failure occurs because the throttle increases too
aggressively and is outside the required boundaries specified in the test. This indicates an issue with
the model design. The PI Controller block implementation would need to be updated to apply the
throttle within the required limits, including when the target and actual speeds differ significantly.

Conclusion

In summary, scoping coverage results to linked requirements can help reveal gaps in testing. Scoping
accomplishes this by assessing that each model element is exercised by the test that verifies the
corresponding requirement.

See Also

Related Examples
• “Collect Coverage in Tests” on page 6-124
• “Increase Test Coverage for a Model” on page 6-136

 Test Coverage for Requirements-Based Testing

6-135

Increase Test Coverage for a Model
Increase test coverage by generating test inputs.

If your tests achieve incomplete model coverage, you can increase coverage by generating test inputs
using Simulink® Design Verifier™. This example shows how to increase test coverage beyond an
initial test case. You measure initial coverage of a test case. Then, you generate new test cases, add
them to the test suite, run the tests, and review aggregate coverage.

Workflow

This example tests a component of an autopilot system using a test harness. Time series data from
the base workspace is mapped to root inports in the test harness. The test file is configured to collect
coverage.

The example workflow is:

1 Measure model coverage of the initial test case.
2 Generate additional tests to achieve greater coverage.
3 Add the new test cases to the test file.
4 Run all test cases and review aggregate coverage.

Paths and Example Files

Set paths and file names for the example.

rollModel = 'RollAutopilotRevised';
testHarness = 'RollReference_LoggedDataTest';
testFile = 'RollRefTest.mldatx';

Run the Initial Test and Review Coverage

1. Ensure the working folder is writable.

2. Open the test file.

sltest.testmanager.view;
sltest.testmanager.load(testFile);

6 Test Manager Test Cases

6-136

3. Run the test. In the Test Browser, highlight the Logged Data and Coverage test suite. Click
Run.

4. After the test completes, in the test results, expand the Coverage Results section. The test
achieves partial coverage for the Roll Reference subsystem.

• Decision coverage: 80%
• Condition coverage: 70%
• MCDC 25%

Generate Tests to Increase Model Coverage

Generate additional tests for missing coverage.

1. Below the coverage result, click Add Tests for Missing Coverage.

2. In the Add Tests for Missing Coverage dialog box, set these options:

• Harness: RollReference_LoggedDataTest. This maps the new test inputs to the existing test
harness.

• Test Case: Create a new test case. This creates a new test case with the generated test
inputs.

• Test Type:: Baseline Test. This gives the option to capture baseline data output from the
model for the generated tests.

 Increase Test Coverage for a Model

6-137

• Test File:: RollRefTest. This re-uses the existing test file.

3. Click OK. A dialog box shows progress of the test case generation. When test case generation is
complete, a new test case appears in the Test Manager.

Alternatively, you can add tests programmatically by using the
sltest.testmanager.addTestsForMissingCoverage function.

Run the New Test Case

1. Drag and Drop the new test case into the Logged Data and Coverage test suite.

2. Run the Logged Data and Coverage test suite again.

3. When simulation completes, in the Results and Artifacts section, select the result set and expand
the Aggregated Coverage Results. The test suite achieves complete coverage:

• Decision: 100%
• Condition: 100%
• MCDC: 100%

Cleanup

Clear variables and test results, and close the model.

clear reqDoc rollModel testFile testHarness topModel;
sltest.testmanager.clearResults;

6 Test Manager Test Cases

6-138

sltest.testmanager.close;
close_system('RollAutopilotRevised',0);

See Also

Related Examples
• “Collect Coverage in Tests” on page 6-124
• “Test Coverage for Requirements-Based Testing” on page 6-131

 Increase Test Coverage for a Model

6-139

Run Tests Using Parallel Execution

In this section...
“When Do Tests Benefit from Using Parallel Execution?” on page 6-140
“Use Parallel Execution” on page 6-140

Running tests in parallel can speed up execution and decrease the amount of time it takes to get test
results. If you have a Parallel Computing Toolbox license, you can execute tests in parallel on your
local machine or cluster. If you have a MATLAB Parallel Server license, you can execute tests in
parallel on a remote cluster, such as in the cloud.

When Do Tests Benefit from Using Parallel Execution?
In general, parallel execution can help reduce test execution time if you have

• A complex Simulink model that takes a long time to simulate
• Numerous long-running tests, such as iterations

Use Parallel Execution
To run tests in parallel:

1 Set up and open a parallel pool on the desired cluster, or set the desired cluster as the default. If
you have a Parallel Computing Toolbox license, see “Discover Clusters and Use Cluster Profiles”
(Parallel Computing Toolbox). If you have a MATLAB Parallel Server license, see “Running Code
on Clusters and Clouds” (MATLAB Parallel Server). If you do not set your default cluster or have
a parallel pool open, the Test Manager uses its default cluster, which is on the local machine.

2 Open the Test Manager.
3 On the Test Manager toolstrip, click the Parallel button.

4 Run a test file. The test file executes using parallel pool.

Note Baseline, equivalence, custom and assessments criteria evaluation occurs on the host
MATLAB and not on the parallel MATLAB workers. Before parallel test execution begins, the
base workspace variables from the host MATLAB are transferred to the base workspaces of the
parallel MATLAB workers. However, after parallel test execution completes, the base workspace
variables are not transferred back to the host MATLAB.

5 To turn off parallel execution, click the Parallel button to toggle it off.

Starting a parallel pool can take time, which would slow down test execution. To reduce time:

6 Test Manager Test Cases

6-140

• Make sure that the parallel pool is already running before you run a test. By default, the parallel
pool shuts down after being idle for a specified number of minutes. To change the setting, see
“Specify Your Parallel Preferences” (Parallel Computing Toolbox).

• Load Simulink on all the parallel pool workers.

See Also
sltest.testmanager.run

Related Examples
• “Clusters and Clouds” (Parallel Computing Toolbox)

 Run Tests Using Parallel Execution

6-141

Set Signal Tolerances
In this section...
“Modify Criteria Tolerances” on page 6-142
“Change Leading Tolerance in a Baseline Comparison Test” on page 6-142

You can specify tolerances in the Baseline Criteria or Equivalence Criteria sections of baseline
and equivalence test cases. You can specify relative, absolute, leading, and lagging tolerances for a
signal comparison. Leading and lagging tolerances allow you to compensate for differences in time
between signals. The units for tolerances are seconds.

To learn about how tolerances are calculated, see “How the Simulation Data Inspector Compares
Data”.

Modify Criteria Tolerances
To modify a tolerance, select the signal name in the criteria table, double-click the tolerance value,
and enter a new value.

If you modify a tolerance after you run a test case, rerun the test case to apply the new tolerance
value to the pass/fail results.

Change Leading Tolerance in a Baseline Comparison Test
Specify a tolerance when the difference between results falls in a range you consider acceptable.
Suppose that your model under test uses a particular solver. Solvers are sometimes updated from one
release to the next, and new solvers also become available. If you use an updated solver or change
solvers, you can specify an acceptable tolerance for differences between your baseline and later tests.
Leading and lagging tolerances allow you to re-evaluate criteria if there are differences in time, for
example, due to solver the data is off by .04 seconds you can shift it left or right to account for this.

Generate the Baseline

Generate the baseline for the sf_car model, which uses the ode-5 solver.

1 Open the sf_car model by using openExample('sf_car').
2 Open the Test Manager and create a test file named Solver Compare. In the test case, set the

system under test to sf_car.
3 Select the signal to log. Under Simulation Outputs, click Add. In the model, select the

shift_logic output signal. In the Signal Selection dialog box, select the check box next to
shift_logic and click Add.

4 Save the baseline. Under Baseline Criteria, click Capture. Set the file format to MAT. Name the
baseline solver_baseline and click Capture.

6 Test Manager Test Cases

6-142

After you capture the baseline MAT-file, the model runs and the baseline criteria appear in the
table. Each default tolerance is 0.

Change Solvers and Run the Test Case

Suppose that you want to use a different solver with your model. You run a test to compare results
using the new solver with the baseline.

1 In the model, change the solver to ode1.
2 In the Test Manager, with the Solver Compare test file selected, click Run.

In the Results and Artifacts pane, notice that the test failed.
3 Expand the results of the failed test. Under Baseline Criteria Result, select the shift_logic

signal.

The Comparison tab shows where the difference occurred.

 Set Signal Tolerances

6-143

4 Zoom the comparison chart where the results diverged. The comparison signal changes ahead of
the baseline, that is, it leads the baseline signal.

6 Test Manager Test Cases

6-144

Preview and Set a Leading Tolerance Value

You can use leading and lagging tolerances to allow for slight offsets in time between the simulation
and baseline data. Suppose that your team determines that a tolerance the size of the simulation step
size (.04 seconds in this case) is acceptable. In the Test Manager, set a leading tolerance value. Use a
leading tolerance for the signal whose change occurs ahead of your baseline. Use a lagging tolerance
for a signal whose change occurs after your baseline.

You can preview how the tolerance value affects the test to see if the test passes with the specified
tolerance. Then set the tolerance on the baseline criteria and rerun the test.

1 Preview whether the tolerance you want to use causes the test to pass. With the result signal
selected, in the property box, set Leading Tolerance to .04.

When you change this value, the status changes to show that the failed tests pass.
2 When you are satisfied with the tolerance value, enter it in the baseline criteria so you can rerun

the test and save the new pass-fail result. In the Test Browser pane, select the test case in the
Solver Compare test.

3 Under Baseline Criteria, change the Leading Tol value for the solver_baseline.mat file
to .04.

By default, each signal inherits this value from the baseline file. You can override the value for
each signal.

 Set Signal Tolerances

6-145

4 Run the test again. The test passes.
5 To store the tolerance value and the passed test with the test file, save the test file.

See Also
sltest.testmanager.BaselineCriteria | sltest.testmanager.SignalCriteria

Related Examples
• “Compare Model Output to Baseline Data” on page 6-7

6 Test Manager Test Cases

6-146

Specify Test Properties in the Test Manager

In this section...
“Test Case, Test Suite, and Test File Sections Summary” on page 6-147
“Tags” on page 6-149
“Description” on page 6-149
“Requirements” on page 6-149
“System Under Test” on page 6-149
“Simulation 1 and Simulation 2” on page 6-150
“Parameter Overrides” on page 6-151
“Callbacks” on page 6-151
“Inputs” on page 6-153
“Simulation Outputs” on page 6-154
“Configuration Settings Overrides” on page 6-154
“Baseline Criteria” on page 6-155
“Equivalence Criteria” on page 6-156
“Iterations” on page 6-156
“Logical and Temporal Assessments” on page 6-157
“Custom Criteria” on page 6-157
“Coverage Settings” on page 6-158
“Test File Options” on page 6-158
“Test File Content” on page 6-159

The Test Manager has property settings that specify how test cases, test suites, and test files run. To
open the Test Manager, use sltest.testmanager.view. For information about the Test Manager,
see Test Manager

Test Case, Test Suite, and Test File Sections Summary
When you open a test case, test suite, or test file in the Test Manager, the test settings are grouped
into sections. Test cases, test suites, and test files have different sections and settings. Click a test
case, test suite, or test file in the Test Browser pane to see its settings.

Test Section Test Case Test Suite Test File
“Tags” on page 6-149 ✔ ✔ ✔

“Description” on page
6-149

✔ ✔ ✔

“Requirements” on page
6-149

✔ ✔ ✔

“System Under Test” on
page 6-149

✔

 Specify Test Properties in the Test Manager

6-147

Test Section Test Case Test Suite Test File
“Simulation 1 and
Simulation 2” on page
6-150

✔

“Parameter Overrides”
on page 6-151

✔

“Callbacks” on page 6-
151

✔ ✔ ✔

“Inputs” on page 6-153 ✔
“Simulation Outputs” on
page 6-154

✔

“Configuration Settings
Overrides” on page 6-
154

✔

“Baseline Criteria” on
page 6-155

✔

“Equivalence Criteria”
on page 6-156

✔

“Iterations” on page 6-
156

✔

“Logical and Temporal
Assessments” on page
6-157

✔

“Custom Criteria” on
page 6-157

✔

“Coverage Settings” on
page 6-158

✔ ✔ ✔

“Test File Options” on
page 6-158

 ✔

“Test File Content” on
page 6-159

 ✔

If you do not want to see all of the available test sections, you can use the Test Manager preferences
to hide sections:

1 In the Test Manager toolstrip, click Preferences.
2 Select the Test File, Test Suite, or Test Case tab.
3 Select the sections to show, or clear the sections to hide. To show only the sections in which you

have already set or changed settings, clear all selections in the Preferences dialog box.
4 Click OK.

Sections that you already modified appear in the Test Manager, regardless of the preference setting.

To set these properties programmatically, see sltest.testmanager.getpref and
sltest.testmanager.setpref.

6 Test Manager Test Cases

6-148

Tags
Tag your test file, test suite, or test case with categorizations, such as safety, logged-data, or
burn-in. Filter tests using these tags when executing tests or viewing results. See “Filter Test
Execution and Results” on page 6-199.

For the corresponding API, see the Tags property of sltest.testmanager.TestFile,
sltest.testmanager.TestSuite, or sltest.testmanager.TestCase, respectively.

Description
Add descriptive text to your test case, test suite, or test file.

For the corresponding API, see the Description property of sltest.testmanager.TestFile,
sltest.testmanager.TestSuite, or sltest.testmanager.TestCase, respectively.

Requirements
If you have Requirements Toolbox installed, you can establish traceability by linking your test file,
test suite, or test case to requirements. For more information, see “Link to Test Cases from
Requirements” (Requirements Toolbox).

To link a test case, test suite, or test file to a requirement:

1 Open the Requirements Editor. In the Simulink Toolstrip, on the Apps tab, under Model
Verification, Validation, and Test, click Requirements Editor.

2 Highlight a requirement.
3 In the Test Manager, in the Requirements section, click the arrow next to the Add button and

select Link to Selected Requirement.
4 The requirement link appears in the Requirements list.

For the corresponding API, see the Requirements property of sltest.testmanager.TestFile,
sltest.testmanager.TestSuite, or sltest.testmanager.TestCase, respectively.

System Under Test
Specify the model you want to test in the System Under Test section. To use an open model in the

currently active Simulink window, click the Use current model button .

Note The model must be available on the path to run the test case. You can add the folder that
contains the model to the path using the preload callback. See “Callbacks” on page 6-151.

Specifying a new model in the System Under Test section can cause the model information to be out
of date. To update the model test harnesses, Signal Editor scenarios, and available configuration sets,

click the Refresh button .

For the corresponding API, see the Model name-argument pair of setProperty.

 Specify Test Properties in the Test Manager

6-149

Test Harness

If you have a test harness in your system under test, then you can select the test harness to use for

the test case. If you have added or removed test harnesses in the model, click the Refresh button
to view the updated test harness list.

For more information about using test harnesses, see “Refine, Test, and Debug a Subsystem” on page
2-22.

For the corresponding API, see the HarnessName name-argument pair of setProperty.

Simulation Settings and Release Overrides

To override the Simulation Mode of the model settings, select a new mode from the list. If the model
contains SIL/PIL blocks and you need to run in Normal mode, enable Override model blocks in
SIL/PIL mode to normal mode. For the corresponding API, see the OverrideSILPILMode name-
argument pair of setProperty.

You can simulate the model and run tests in more than one MATLAB release that is installed on your
system. Use Select releases for simulation to select available releases. You can use releases from
R2011b forward.

To add one or more releases so they are available in the Test Manager, click Add releases in Select
releases for simulation to open the Release pane in the Test Manager Preferences dialog box.
Navigate to the location of the MATLAB installation you want to add, and click OK.

You can add releases to the list and delete them. You cannot delete the release in which you started
the MATLAB session.

For more information, see “Run Tests in Multiple Releases of MATLAB” on page 6-83. For the
corresponding API, see the Release name-argument pair of setProperty.

System Under Test Considerations

• The System Under Test cannot be in fast restart or external mode.
• To stop a test running in Rapid Accelerator mode, press Ctrl+C at the MATLAB command

prompt.
• When running parallel execution in rapid accelerator mode, streamed signals do not show up in

the Test Manager.
• The System Under Test cannot be a protected model.

Simulation 1 and Simulation 2
These sections appear in equivalence test cases. Use them to specify the details about the simulations
that you want to compare. Enter the system under test, the test harness if applicable, and simulation
setting overrides under Simulation 1. You can then click Copy settings from Simulation 1 under
Simulation 2 to use a starting point for your second set of simulation settings.

For the test to pass, Simulation 1 and Simulation 2 must log the same signals.

Use these sections with the Equivalence Criteria section to define the premise of your test case. For
an example of an equivalence test, see “Test Two Simulations for Equivalence” on page 6-37 .

6 Test Manager Test Cases

6-150

For the corresponding API, see the SimulationIndex name-argument pair of setProperty.

Parameter Overrides
Specify parameter values in the test case to override the parameter values in the model workspace,
data dictionary, base workspace, or in a model reference hierarchy. Parameters are grouped into sets.
You can turn parameter sets and individual parameter overrides on or off by using the check box next
to the set or parameter.

To add a parameter override:

1 Click Add.

A dialog box opens with a list of parameters. If the list of parameters is not current, click the

Refresh button in the dialog box.
2 Select the parameter you want to override.
3 To add the parameter to the parameter set, click OK.
4 Enter the override value in the parameter Override Value column.

To restore the default value of a parameter, clear the value in the Override Value column and press
Enter.

You can also add a set of parameter overrides from a MAT-file, including MAT-files generated by
Simulink Design Verifier. Click the Add arrow and select Add File to create a parameter set from a
MAT-file.

For an example that uses parameter overrides, see “Override Model Parameters in a Test Case” on
page 6-33.

For the corresponding APIs, see the sltest.testmanager.ParameterOverride class, and the
OverrideStartTime, OverrideStopTIme, OverrideInitialState,
OverrideModelOutputSettings, and ConfigSetOverrideSetting name-argument pairs of the
setProperty method.

Parameter Overrides Considerations

The Test Manager displays only top-level system parameters from the system under test.

Callbacks
Test-File Level Callbacks

Two callback scripts are available in each test file that execute at different times during a test:

• Setup runs before test file executes.
• Cleanup runs after test file executes.

For the corresponding test case APIs, see the PreloadCallback, PostloadCallback,
CleanupCallback, and PreStartRealTimeApplicationCallback name-argument pairs of the
TestCase setProperty method.

 Specify Test Properties in the Test Manager

6-151

For the corresponding test file APIs, see the SetupCallback and CleanupCallback name-
argument pairs of the test file TestFile setProperty method.

Test-Suite Level Callbacks

Two callback scripts are available in each test suite that execute at different times during a test:

• Setup runs before the test suite executes.
• Cleanup runs after the test suite executes.

If a test suite does not have anytest cases, the test suite callbacks do not execute.

For the corresponding APIs, see the SetupCallback and CleanupCallback name-argument pairs
of the TestSuite setProperty method.

Test-Case Level Callbacks

Three callback scripts are available in each test case that execute at different times during a test:

• Pre-load runs before the model loads and before the model callbacks.
• Post-load runs after the model loads and the PostLoadFcn model callback.
• Cleanup runs after simulations and model callbacks.

See “Test Execution Order” on page 6-195 for information about the order in which callbacks occur
and models load and simulate.

To run a single callback script, click the Run button above the corresponding script.

You can use predefined variables in the test case callbacks:

• sltest_bdroot available in Post-Load: The model simulated by the test case. The model can be
a harness model.

• sltest_sut available in Post-Load: The system under test. For a harness, it is the component
under test.

• sltest_isharness available in Post-Load: Returns true if sltest_bdroot is a harness model.
• sltest_simout available in Cleanup: Simulation output produced by simulation.
• sltest_iterationName available in Pre-Load, Post-Load, and Cleanup: Name of the

currently executing test iteration.

disp and fprintf do not work in callbacks. To verify that the callbacks are executed, use a MATLAB
script that includes breakpoints in the callbacks.

The test case callback scripts are not stored with the model and do not override Simulink model
callbacks. Consider the following when using callbacks:

• To stop execution of an infinite loop from a callback script, press Ctrl+C at the MATLAB command
prompt.

• sltest.testmanager functions are not supported.

For the corresponding APIs, see the PreloadCallback, PostloadCallback, CleanupCallback,
and PreStartRealTimeApplicationCallback name-argument pairs of the TestCase
setProperty method.

6 Test Manager Test Cases

6-152

Assessment Callback

You can enter a callback to define variables and conditions used only in logical and temporal
assessments by using the Assessment Callback section. See “Assessment Callback” on page 6-157
in the Logical and Temporal Assessments section for more information.

For the corresponding API, see setAssessmentsCallback.

Inputs
A test case can use input data from:

• A Signal Editor block in the system under test. Select Signal Editor scenario and select the
scenario. The system under test can have only one Signal Editor block at the top level.

• An external data file. In the External Inputs table, click Add. Select a MAT-file or Microsoft Excel
file.

For more information on using external files as inputs, see “Use External Excel or MAT-File Data
in Test Cases” on page 6-64. For information about the file format for Microsoft Excel files in Test
Manager, see “Format Test Case Data in Excel” on page 6-75.

•
Scenarios in a Test Sequence block. First, click the refresh arrow next to the Test Sequence
Block field, then select the Test Sequence block in the model that contains the scenarios. If you
do not also select a scenario from Override with Scenario and do not use iterations, then the
test runs the active scenario in the selected Test Sequence block. If you do not also select a
scenario, but do use iterations, then the active scenario in the Test Sequence block is the default
for all the iterations.

Use Override with Scenario to override the active scenario in the selected Test Sequence block.
Click the refresh arrow next to the Override with Scenario field. Then, select the scenario to use
instead of the active scenario or as the default for the iterations. In the Iterations section, you
can change the scenario assigned to each iteration. For more information, see “Use Test Sequence
Scenarios in the Test Sequence Editor and Test Manager” on page 3-58.

• An input file template that you create and populate with data. See “Create Data Files for Test Case
Input” on page 6-72.

To include the input data in your test results set, select Include input data in test result.

If the time interval of your input data is shorter than the model simulation time, you can limit the
simulation to the time specified by your input data by selecting Stop simulation at last time point.

For more information on test inputs, see the Test Authoring: Inputs page.

Edit Input Data Files in Test Manager

From the Test Manager, you can edit your input data files.

To edit a file, select the file and click Edit. You can then edit the data in the signal editor for MAT-files
or Microsoft Excel for Excel files.

To learn about the syntax for Excel files, see “Format Test Case Data in Excel” on page 6-75.

For the corresponding API, see sltest.testmanager.TestInput.

 Specify Test Properties in the Test Manager

6-153

Simulation Outputs
Use the Simulation Outputs section to add signal outputs to your test results. Signals logged in
your model or test harness can appear in the results after you add them as simulation outputs. You
can then plot them. Add individual signals to log and plot or add a signal set.

Under Simulation Outputs, click Add. Follow the user interface.

Use the options in the Other Outputs subsection to add states, final states, model output values,
data store variables, and signal logging values to your test results. To enable selecting one or more of
these options, click Override model settings.

• States — Include state values between blocks during simulation. You must have a Sequence
Viewer block in your model to include state values.

• Final states — Include final state values. You must have a Sequence Viewer block in your model
to include final state values.

• Output — Include model output values.
• Data stores — Include logged data store variables in Data Store Memory blocks in the model.

This option is selected by default.
• Signal logging — Include logged signals specified in the model. This option is selected by

default. If you selected Log Signal Outputs when you created the harness, all of the output
signals for the component under test are logged and returned in test results, even though they are
not listed in the Simulation Outputs section. To turn off logging for one of the signals, in the test
harness, right-click a signal and select Stop Logging Selected Signals.

For more information, see “Capture Simulation Data in a Test Case” on page 6-77.

For the corresponding API, see the OverrideModelOutputSettings name-argument pair of
setProperty.

Configuration Settings Overrides
For the test case, you can specify configuration settings that differ from the settings in the model.
Setting the configuration settings in the test case enables you to try different configurations for a test
case without modifying the model. The configuration settings overrides options are:

• Do not override model settings — Use the current model configuration settings
• Name — Name of active configuration set. A model can have only one active configuration set.

Refresh the list to see all available configuration sets and select the desired one to be active. If
you leave the default [Model Settings] as the name, the simulation uses the default, active
configuration set of the model.

• Attach configuration set in a file — Path to the external file (File Location) that contains a
configuration set variable. The variable you specify in Variable Name references the name of a
configuration set in the file. For information on creating a configuration set, see
Simulink.ConfigSet and “Save a Configuration Set”. For information on configuration set
references, see “Share a Configuration with Multiple Models”.

For the corresponding API, see the ConfigSetOverrideSetting, ConfigSetName,
ConfigSetVarName, ConfigSetFileLocation, and ConfigSetOverrideSetting name-
argument pairs of setProperty.

6 Test Manager Test Cases

6-154

Baseline Criteria
The Baseline Criteria section appears in baseline test cases. When a baseline test case executes,
Test Manager captures signal data from signals in the model marked for logging and compares them
to the baseline data.

Capture Baseline Criteria

To capture logged signal data from the system under test to use as the baseline criteria, click
Capture. Then follow the prompts in the Capture Baseline dialog box. Capturing the data compiles
and simulates the system under test and stores the output from the logged signals to the baseline.
For a baseline test example, see “Compare Model Output to Baseline Data” on page 6-7.

For the corresponding API, see the captureBaselineCriteria method.

You can save the signal data to a MAT-file or a Microsoft Excel file. To understand the format of the
Excel file, see “Format Test Case Data in Excel” on page 6-75.

You can capture the baseline criteria using the current release for simulation or another release
installed on your system. Add the releases you want to use in the Test Manager preferences. Then,
select the releases you want available in your test case using the Select releases for simulation
option in the test case. When you run the test, you can compare the baseline against the release you
created the baseline in or against another release. For more information, see “Run Tests in Multiple
Releases of MATLAB” on page 6-83.

When you select Excel as the output format, you can specify the sheet name to save the data to. If you
use the same Excel file for input and output data, by default both sets of data appear in the same
sheet.

If you are capturing the data to a file that already contains outputs, specify the sheet name to
overwrite the output data only in that sheet of the file.

To save a baseline for each test case iteration in a separate sheet in the same file, select Capture
Baselines for Iterations. This check box appears only if your test case already contains iterations.
For more information on iterations, see “Test Iterations” on page 6-113.

Specify Tolerances

You can specify tolerances to determine the pass-fail criteria of the test case. You can specify
absolute, relative, leading, and lagging tolerances for individual signals or the entire baseline criteria
set.

After you capture the baseline, the baseline file and its signals appear in the table. In the table, you
can set the tolerances for the signals. To see tolerances used in an example for baseline testing, see
“Compare Model Output to Baseline Data” on page 6-7.

For the corresponding API, see the AbsTol, RelTol, LeadingTol, and LaggingTol properties of
sltest.testmanager.BaselineCriteria.

Add File as Baseline

By clicking Add, you can select an existing file as a baseline. You can add MAT-files and Microsoft
Excel files as the baseline. Format Microsoft Excel files as described in “Format Test Case Data in
Excel” on page 6-75.

 Specify Test Properties in the Test Manager

6-155

For the corresponding API, see the addInput method.

Update Signal Data in Baseline

You can edit the signal data in your baseline, for example, if your model changed and you expect
different values. To open the signal editor or the Microsoft Excel file for editing, select the baseline
file from the list and click Edit. See “Manually Update Signal Data in a Baseline” on page 6-93.

You can also update your baseline when you examine test failures in the data inspector view. See
“Examine Test Failures and Modify Baselines” on page 6-91.

Equivalence Criteria
This section appears in equivalence test cases. The equivalence criteria is a set of signal data to
compare in Simulation 1 and Simulation 2. Specify tolerances to regulate pass-fail criteria of the test.
You can specify absolute, relative, leading, and lagging tolerances for the signals.

To specify tolerances, first click Capture to run the system under test in Simulation 1 and add signals
marked for logging to the table. Specify the tolerances in the table.

After you capture the signals, you can select signals from the table to narrow your results. If you do
not select signals under Equivalence Criteria, running the test case compares all the logged signals
in Simulation 1 and Simulation 2.

For an example of an equivalence test case, see “Test Two Simulations for Equivalence” on page 6-37.

For the corresponding API, see the captureEquivalenceCriteria method.

Iterations
Use iterations to repeat a test with different parameter values, configuration sets, or input data.

• You can run multiple simulations with the same inputs, outputs, and criteria by sweeping through
different parameter values in a test case.

• Models, external data files, and Test Sequence blocks can contain multiple test input scenarios. To
simplify your test file architecture, you can run different input scenarios as iterations rather than
as different test cases. You can apply different baseline data to each iteration, or capture new
baseline data from an iteration set.

• You can iterate over different configuration sets, for example to compare results between solvers
or data types. You can also iterate over different scenarios in a Test Sequence block.

To create iterations from defined parameter sets, signal editor scenarios, Test Sequence scenarios,
external data files, or configuration sets, use table iterations. To create a custom set of iterations from
the available test case elements, write a MATLAB iteration script in the test case.

To run the iterations without recompiling the model for each iteration, enable Run test iterations in
fast restart. When selected, this option reduces simulation time.

For more information about test iterations, see “Test Iterations” on page 6-113. For more information
about fast restart, see “How Fast Restart Improves Iterative Simulations”.

For the corresponding API, see sltest.testmanager.TestIteration.

6 Test Manager Test Cases

6-156

Logical and Temporal Assessments
Create temporal assessments using the form-based editor that prompts you for conditions, events,
signal values, delays, and responses. When you collapse the individual elements, the editor displays a
readable statement summarizing the assessment. See “Assess Temporal Logic by Using Temporal
Assessments” on page 3-92 and “Logical and Temporal Assessment Syntax” on page 3-106 for more
information.

Assessment Callback

You can define variables and use them in logical and temporal assessment conditions and expressions
in the Assessment Callback section.

Define variables by writing a script in the Assessment Callback section. You can map these
variables to symbols in the Symbols pane by right-clicking the symbol, selecting Map to expression,
and entering the variable name in the Expression field. For information on how to map variables to
symbols, see Map to expression under “Resolve Assessment Parameter Symbols” on page 3-94.

The Assessment Callback section has access to the predefined variables that contain test,
simulation, and model data. You can define a variable as a function of this data. For more information,
see “Define Variables in the Assessment Callback Section” on page 3-109. For the corresponding API
methods, see setAssessmentsCallback and getAssessmentsCallback.

If your assessments use at least, at most, between, or until syntax, select Extend Results to
produce the minimum possible untested results. In some cases, none or not all untested results can
be tested, so the results will still show some untested results. When you extend the test results,
previously passing tests might fail. Leave Extend Results checked unless you need to avoid an
incompatibility with earlier test results.

Symbol t (time)

The symbol t is automatically bound to simulation time and can be used in logical and temporal
assessment conditions. This symbol does not need to be mapped to a variable and is not visible in the
Symbols pane. For example, to limit an assessment to a time between 5 and 7 seconds, create a
Trigger-response assessment and, in the trigger condition, enter t < 5 & t > 7. To avoid
unexpected behavior, do not define a new symbol t in the Symbols pane.

Symbol Data Type

If you map a symbol to a discrete data signal that is linearly interpolated, the interpolation is
automatically changed to zero-order hold during the assessment evaluation.

Custom Criteria
This section includes an embedded MATLAB editor to define custom pass/fail criteria for your test.
Select function customCriteria(test) to enable the criteria script in the editor. Custom criteria
operate outside of model run time; the script evaluates after model simulation.

Common uses of custom criteria include verifying signal characteristics or verifying test conditions.
MATLAB Unit Test qualifications provide a framework for verification criteria. For example, this
custom criteria script gets the last value of the signal PhiRef and verifies that it equals 0:
% Get the last value of PhiRef from the dataset Signals_Req1_3
lastValue = test.sltest_simout.get('Signals_Req1_3').get('PhiRef').Values.Data(end);

 Specify Test Properties in the Test Manager

6-157

% Verify that the last value equals 0
test.verifyEqual(lastValue,0);

See “Process Test Results with Custom Scripts” on page 6-165. For a list of MATLAB Unit Test
qualifications, see “Table of Verifications, Assertions, and Other Qualifications”.

You can also define plots in the Custom Criteria section. See “Create, Store, and Open MATLAB
Figures” on page 6-173.

For the corresponding API, see sltest.testmanager.CustomCriteria.

Coverage Settings
Use this section to configure coverage collection for a test file. The settings propagate from the test
file to the test suites and test cases in the test file. You can deselect coverage settings for a test suite
or test case. The coverage collection options are:

• Record coverage for system under test — Collects coverage for the model specified as the
“System Under Test” on page 6-149 for each test case.

• Record coverage for referenced models — Collects coverage for models that are referenced
from within the specified system under test.

For information on the Coverage Metrics options, see “Types of Model Coverage” (Simulink
Coverage).

Coverage filter files specified in this section override filter files specified in the model configuration
settings. For more information, see “Collect Coverage in Tests” on page 6-124. Coverage is not
supported for SIL or PIL blocks.

For the corresponding API, see sltest.testmanager.CoverageSettings.

Test File Options
Close open Figures at the end of execution

When your tests generate figures, select this option to clear the working environment of figures after
the test execution completes.

For the corresponding API, see the CloseFigures property of sltest.testmanager.Options.

Store MATLAB figures

Select this option to store figures generated during the test with the test file. You can enter MATLAB
code that creates figures and plots as a callback or in the test case Custom Criteria section. See
“Create, Store, and Open MATLAB Figures” on page 6-173.

For the corresponding API, see the SaveFigures property of sltest.testmanager.Options.

Generate report after execution

Select Generate report after execution to create a report after the test executes. Selecting this
option displays report options that you can set. The settings are saved with the test file.

6 Test Manager Test Cases

6-158

Note To enable the options to specify the number of plots per page, select Plots for simulation
output and baseline.

For the corresponding API, see the GenerateReport property of sltest.testmanager.Options.

For detailed reporting information, see “Export Test Results” on page 7-16 and “Customize Test
Results Reports” on page 7-21.

Test File Content
For a MATLAB-based Simulink test, displays the contents of the M file that defines the test. This
section appears only if you opened or created a new MATLAB-based Simulink test. See “Using
MATLAB-Based Simulink Tests in the Test Manager” on page 6-105.

See Also
Test Manager | sltest.testmanager.getpref | sltest.testmanager.setpref

 Specify Test Properties in the Test Manager

6-159

Preferences
Set test sections to display and releases to use for testing.

Display Tab - Select test sections to show when you select a test file, test suite, or test case in the
Test Manager. Sections that you have changed from their default settings are always shown, even if
you deselect them in this tab. To show only the sections in which you have already set or changed
settings, clear all selections.

Release Tab - Select releases to use with tests. Only installed releases are available to add. Releases
you select are available in Selected releases for simulation list in the System Under Test section.

6 Test Manager Test Cases

6-160

Increase Coverage by Generating Test Inputs
In this section...
“Overall Workflow” on page 6-161
“Test Case Generation Example” on page 6-162

Using Simulink Design Verifier, you can generate test inputs that replicate design errors, achieve test
objectives, or meet coverage criteria. Simulink Test can create test cases that use test inputs and
expected outputs from Simulink Design Verifier.

Overall Workflow
Test case generation follows this workflow.

1 Choose an existing Simulink Design Verifier results file, or generate new results by analyzing
your model.

• If you use an existing results file, you can load results by either:

• Using the Simulink Test command sltest.import.sldvData.
• Using Simulink Design Verifier menu items. In the model, on the Apps tab, under Model
Verification, Validation, and Test, click Design Verifier. On the Tests tab, click Simulink
Test Manager. In the Review Results section, click Load Earlier Results. Select the
MAT file with the analysis results.

• If you run a model analysis, the Simulink Design Verifier Results Summary window appears
after the analysis completes.

2 In the results summary window, click Export test cases to Simulink Test.
3 Enter the name of an existing or new test harness.
4 Select a test harness source for the generated test inputs. You can select

• Inport: The inputs are contained in the Simulink Design Verifier data file and mapped to
Inport blocks in the test harness. The mapping is shown in the Inputs section of the test case.
Using the Inport option allows you to map other inputs to the test harness Inport blocks,
which can be useful for running multiple test cases or iterations using the same test harness.
Both MAT and Excel files are supported when the source in Inport.

• Signal Editor: The inputs are in scenarios in a Signal Editor block inside the test harness.
The Signal Editor block supports MAT files that contain these inputs. You can edit these
scenarios in the Signal Editor.

5 Select a new or existing test file, and enter names for the test file and test case.
6 Click OK to export the test cases to Simulink Test. The test files and test cases are updated in the

Test Manager. Simulink Design Verifier saves a MAT or Excel data file that also includes
parameter settings. You can view or override these settings in the Parameter Overrides section of
the Test Manager.

Note Another way to import test cases from Simulink Design Verifier is with the Create Test for
Component wizard. For information, see “Generate Tests and Test Harnesses for a Component or
Model” on page 6-26.

 Increase Coverage by Generating Test Inputs

6-161

Test Case Generation Example
This example shows how to generate test cases for a controller subsystem using Simulink Design
Verifier, and export the test cases to a test file in Simulink Test. The example requires a Simulink
Design Verifier license.

The model is a closed-loop heat pump system. The controller accepts the measured room temperature
and set temperature inputs. The controller outputs a bus of three signals controlling the fan, heat
pump, and the direction of the heat pump (heat or cool). The model contains a harness that tests
heating and cooling scenarios.

1 Open the model.

open_system(fullfile(docroot,'toolbox','sltest','examples',...
'sltestTestCaseFromDVExample.slx'));

If you do not specify the full file path, as shown in this step, the model must be on the MATLAB
path or in the current working folder.

2 Set the current working folder to a writable folder.
3 In the model, generate tests for the Controller subsystem. Right-click the Controller block

and select Design Verifier > Generate Tests for Subsystem.

Simulink Design Verifier generates tests for the component.
4 In the results summary window, click Export test cases to Simulink Test.
5 In the Export Design Verifier Test Cases dialog box, enter:

• Test Harness: TestHarness1
• Harness Source: Signal Editor
• Select Use a new test file
• Test File: ./TestFile_GeneratedTests.mldatx
• Test Case: <Create a new test case>

6 Click OK.

A new test file is created in the working folder, and a test harness is added to the main model,
owned by the Controller subsystem. Click the harness badge to preview the new test harness.

6 Test Manager Test Cases

6-162

7 Click the TestHarness1 thumbnail to open the harness. Then double-click the Harness Inputs
Signal Editor block source.

8
In the Block Parameters: Harness Inputs dialog box, click Launch Signal Editor .

9 To see the test inputs in the Signal Editor, expand a test case and select the inputs.

10 In the Test Manager, the new test case displays the system under test, and the test harness
containing the generated inputs in the Signal Editor source. Expand the Iterations section to
see the iterations corresponding to the signal scenarios.

 Increase Coverage by Generating Test Inputs

6-163

See Also
sltest.import.sldvData

More About
• “Generate Tests and Test Harnesses for a Component or Model” on page 6-26

6 Test Manager Test Cases

6-164

Process Test Results with Custom Scripts
In this section...
“MATLAB Testing Framework” on page 6-165
“Define a Custom Criteria Script” on page 6-165
“Reuse Custom Criteria and Debug Using Breakpoints” on page 6-166
“Custom Criteria Programmatic Interface Example” on page 6-168

Testing your model often requires assessing conditions that ensure a test is valid, in addition to
verifying model behavior. MATLAB Unit Test provides a framework for such assessments. In Simulink
Test, you can use the test case custom criteria to author specific assessments, and include MATLAB
Unit Test qualifications in your script.

Custom criteria apply as post-simulation criteria to the simulation output. See
Simulink.SimulationOutput. If you require run-time verifications, use a verify() statement in
a Test Assessment or Test Sequence block. See “Assess Model Simulation Using verify Statements” on
page 3-18.

MATLAB Testing Framework
A custom criteria script is a method of test, which is a matlab.unittest test case object. To
enable the function, in the test case Custom Criteria section of the Test Manager, select function
customCriteria(test). Inside the function, enter the custom criteria script in the embedded MATLAB
editor.

The embedded MATLAB editor lists properties of test. Create test assessments using MATLAB Unit
Test qualifications. Custom criteria supports verification and assertion type qualifications. See “Table
of Verifications, Assertions, and Other Qualifications”. Verifications and assertions operate differently
when custom criteria are evaluated:

• Verifications – Other assessments are evaluated when verifications fail. Diagnostics appear in the
results. Use verifications for general assessments, such as checking simulation against expected
outputs.

Example: test.verifyEqual(lastValue,0)
• Assertions – The custom criteria script stops evaluating when an assertion fails. Diagnostics

appear in the results. Use assertions for conditions that render the criteria invalid.

Example: test.assertEqual(lastValue,0).

Define a Custom Criteria Script
This example shows how to create a custom criteria script for an autopilot test case.

1 Open the test file.

sltest.testmanager.load('AutopilotTestFile.mldatx')
sltest.testmanager.view

2 In the Test Browser, select AutopilotTestFile > Basic Design Test Cases > Requirement
1.3 Test. In the test case, expand the Custom Criteria section.

 Process Test Results with Custom Scripts

6-165

3 Enable the custom criteria script by selecting function customCriteria(test).
4 In the embedded MATLAB editor, enter the following script. The script gets the final value of the

signals Phi and APEng, and verifies that the final values equal 0. Signals_Req1_3 is one of the
test requirements and sltest_simout is the simulation output.

% Get the last values
lastPhi = test.sltest_simout.get...
 ('Signals_Req1_3').get('Phi').Values.Data(end);
lastAPEng = test.sltest_simout.get...
 ('Signals_Req1_3').get('APEng').Values.Data(end);

% Verify the last values equal 0
test.verifyEqual(lastPhi,0,...
 ['Final Phi value: ',num2str(lastPhi),'.']);
test.verifyEqual(lastAPEng,false,...
 ['Final APEng value: ',num2str(lastAPEng),'.']);

5 Run the test case.
6 In the Results and Artifacts pane, expand the Custom Criteria Result. Both criteria pass.

Reuse Custom Criteria and Debug Using Breakpoints
In addition to authoring criteria scripts in the embedded MATLAB editor, you can author custom
criteria in a standalone function, and call the function from the test case. Using a standalone function
allows you

• To reuse the custom criteria in multiple test cases.
• To set breakpoints in the criteria script for debugging.
• To investigate the simulation output using the command line.

In this example, you add a breakpoint to a custom criteria script. You run the test case, list the
properties of the test object at the command line, and call the custom criteria from the test case.

Call Custom Criteria Script from the Test Case
1 Navigate to the folder containing the criteria function.

cd(fullfile(docroot,'toolbox','sltest','examples'))
2 Open the custom criteria script

open('sltestCheckFinalRollRefValues.m')

% This is a custom criteria function for a Simulink Test test case.
% The function gets the last values of Phi and APEng from the

6 Test Manager Test Cases

6-166

% Requirements 1.3 test case in the test file AutopilotTestFile.

function sltestCheckFinalRollRefValues(test)

% Get the last values
lastPhi = test.sltest_simout.get...
 ('Signals_Req1_3').get('Phi').Values.Data(end)
lastAPEng = test.sltest_simout.get...
 ('Signals_Req1_3').get('APEng').Values.Data(end)

% Verify the last values equal 0
test.verifyEqual(lastPhi,0,...
 ['Final Phi value: ',num2str(lastPhi),'.']);
test.verifyEqual(lastAPEng,false,...
 ['Final APEng value: ',num2str(lastAPEng),'.']);

3 Open the test file

sltest.testmanager.load('AutopilotTestFile.mldatx')
sltest.testmanager.view

4 In the embedded MATLAB editor under Custom Criteria, enter the function call to the custom
criteria:

sltestCheckFinalRollRefValues(test)

Set Breakpoints and List test Properties

1 On line 8 of sltestCheckFinalRollRefValues.m, set a breakpoint by clicking the dash to the
right of the line number.

2 In the Test Manager, run the test case.

The command window displays a debugging prompt.
3 Enter test at the command prompt to display the properties of the STMCustomCriteria

object. The properties contain characteristics and simulation data output of the test case.

test =

 STMCustomCriteria with properties:

 TestResult: [1×1 sltest.testmanager.TestCaseResult]
 sltest_simout: [1×1 Simulink.SimulationOutput]
 sltest_testCase: [1×1 sltest.testmanager.TestCase]
 sltest_bdroot: {'RollReference_Requirement1_3'}
 sltest_sut: {'RollAutopilotMdlRef/Roll Reference'}
 sltest_isharness: 1
 sltest_iterationName: ''

The property sltest_simout contains the simulation data. To view the data PhiRef, enter

test.sltest_simout.get('Signals_Req1_3').get('PhiRef')

ans =

 Simulink.SimulationData.Signal
 Package: Simulink.SimulationData

 Properties:

 Process Test Results with Custom Scripts

6-167

 struct with fields:

 Name: 'PhiRef'
 PropagatedName: ''
 BlockPath: [1×1 Simulink.SimulationData.BlockPath]
 PortType: 'outport'
 PortIndex: 1
 Values: [1×1 timeseries]

4 In the MATLAB editor, click Continue to continue running the custom criteria script.
5 In the Results and Artifacts pane, expand the Custom Criteria Result. Both criteria pass.
6 To reuse the script in another test case, call the function from the test case custom criteria.

Custom Criteria Programmatic Interface Example
This example shows how to set and get custom criteria using the programmatic interface.

Before running this example, temporarily disable warnings that result from verification failures.

warning off Stateflow:Runtime:TestVerificationFailed;
warning off Stateflow:cdr:VerifyDangerousComparison;

Load a Test File and Get Test Case Object

tf = sltest.testmanager.load('AutopilotTestFile.mldatx');

ts = getTestSuiteByName(tf,'Basic Design Test Cases');

tc = getTestCaseByName(ts,'Requirement 1.3 Test');

Create the Custom Criteria Object and Set Criteria

Create the custom criteria object.

tcCriteria = getCustomCriteria(tc)

tcCriteria =
 CustomCriteria with properties:

 Enabled: 0
 Callback: '% Return value: customCriteria...'

Create the custom criteria expression. This script gets the last value of the signal Phi and verifies
that it equals 0.

criteria = ...
 sprintf(['lastPhi = test.SimOut.get(''Signals_Req1_3'')',...
 '.get(''Phi'').Values.Data(end);\n',...
 'test.verifyEqual(lastPhi,0,[''Final: '',num2str(lastPhi),''.'']);'])

criteria =
 'lastPhi = test.SimOut.get('Signals_Req1_3').get('Phi').Values.Data(end);
 test.verifyEqual(lastPhi,0,['Final: ',num2str(lastPhi),'.']);'

Set and enable the criteria.

6 Test Manager Test Cases

6-168

tcCriteria.Callback = criteria;
tcCriteria.Enabled = true;

Run the Test Case and Get the Results

Run the test case.

tcResultSet = run(tc);

Get the test case results.

tcResult = getTestCaseResults(tcResultSet);

Get the custom criteria result.

ccResult = getCustomCriteriaResult(tcResult)

ccResult =
 CustomCriteriaResult with properties:

 Outcome: Failed
 DiagnosticRecord: [1x1 sltest.testmanager.DiagnosticRecord]

Restore warnings from verification failures.

warning on Stateflow:Runtime:TestVerificationFailed;
warning on Stateflow:cdr:VerifyDangerousComparison;

sltest.testmanager.clearResults
sltest.testmanager.clear
sltest.testmanager.close

See Also

Related Examples
• “Test Models Using MATLAB Unit Test” on page 6-176
• “Create, Store, and Open MATLAB Figures” on page 6-173

 Process Test Results with Custom Scripts

6-169

Assess the Damping Ratio of a Flutter Suppression System
This example shows how to use a custom criteria script to verify that wing oscillations are damped in
multiple altitude and airspeed conditions.

The Test and Model

The model uses Simscape™ to simulate a Benchmark Active Controls Technology (BACT) / Pitch and
Plunge Apparatus (PAPA) setup. It uses Aerospace Blockset™ to simulate aerodynamic forces on the
wing.

The test iterates over 16 combinations of Mach and Altitude. The test case uses custom criteria
with Curve Fitting Toolbox™ to find the peaks of the wing pitch, and determine the damping ratio. If
the damping ratio is not greater than zero, the assessment fails.

Click Open Script to open the test file.

open('sltestFlutterCriteriaTest.mldatx')

In the Test Browser, select Altitude and mach iterations. Open the model by clicking the arrow
next to Model in the System Under Test section.

open_system('sltestFlutterSuppressionSystemExample.slx')

Custom Criteria Script

The test case custom criteria uses this script to verify that the damping ratio is greater than zero.

6 Test Manager Test Cases

6-170

% Get time and data for pitch
Time = test.sltest_simout.get('sigsOut').get('pitch').Values.Time(1:15000);
Data = test.sltest_simout.get('sigsOut').get('pitch').Values.Data(1:15000);

% Find peaks
[~, peakIds] = findpeaks(Data,'minpeakheight', 0.002, 'minpeakdistance', 50);
peakTime= Time(peakIds);
peakPos = Data(peakIds);
rn = peakPos(1)./peakPos(2:end);
L = 1:length(rn);

% Do curve fitting
fittedModel = exponentialFitAndPlot(L, rn);
delta = fittedModel.d;

% Find damping ratio
dRatio = delta/sqrt((2*pi)^2+delta^2);

% Make sure damping ratio is greater than 0
test.verifyGreaterThan(dRatio,0,'Damping ratio must be greater than 0');

Test Results

Running the test case returns two conditions in which the damping ratio is greater than zero.

results = sltest.testmanager.run;

The wing pitch plots from iteration 12 and 13 show the difference between a positive damping ratio
(iteration 12) and a negative damping ratio (iteration 13).

 Assess the Damping Ratio of a Flutter Suppression System

6-171

sltest.testmanager.close
close_system('sltestFlutterSuppressionSystemExample.slx',0)

6 Test Manager Test Cases

6-172

Create, Store, and Open MATLAB Figures
In this section...
“Create a Custom Figure for a Test Case” on page 6-173
“Include Figures in a Report” on page 6-174

You can create figures using MATLAB commands to include with test results and reports. Enter the
commands in a test case section that accepts MATLAB code. These sections include the test case
Custom Criteria section, and callbacks that can execute with your test case.

If you include code that creates figures with your test case, you can:

• Display the figures after the test runs
• Store the figures with your test case
• Include them in a report
• Access stored figures from your test results

To specify this behavior, use the Test File Options section under the Test File settings.

• Select Close all open figures at the end of execution if you do not need to see the figures right
after the test executes, for example, if you are storing the figures or including them in a report.
Clear this check box if you are not storing the figures and you want to view them after the test
executes.

• Select Store MATLAB figures if you want to save the figures with the test results. This option
also enables you to open the figures from the results and to include them in a report.

After you run the test, the figures appear under MATLAB Figures in the test case results.

Create a Custom Figure for a Test Case
In this example, add code that creates a figure to the Custom Criteria section of a test case. To
access the figure from the test results, set options on the test file.

1 Open the model to test using openExample('sldemo_absbrake').
2 In the Test Manager, create a test file and name it custom_figures.
3 In the default test case, under System Under Test, set the model to sldemo_absbrake.
4 Under Custom Criteria, select the function customCriteria(test) check box and paste this

code in the text box.

h = findobj(0,'Name','ABS Speeds and Slip');
if isempty(h)
 h=figure('Position',[26 100 452 700],...
 'Name','ABS Speeds and Slip',...
 'NumberTitle','off');
end
figure(h)
set(h,'DefaultAxesFontSize',8)

% Log data object and store in sldemo_absbrake_output variable
out = test.sltest_simout.get('sldemo_absbrake_output');

% Plot wheel speed and car speed

 Create, Store, and Open MATLAB Figures

6-173

subplot(3,1,1);
plot(out.get('yout').Values.Vs.Time, ...
 out.get('yout').Values.Vs.Data);
grid on;
title('Vehicle speed'); ylabel('Speed(rad/sec)'); xlabel('Time(sec)');
subplot(3,1,2);
plot(out.get('yout').Values.Ww.Time, ...
 out.get('yout').Values.Ww.Data);
grid on;
title('Wheel speed'); ylabel('Speed(rad/sec)'); xlabel('Time(sec)');
subplot(3,1,3);
plot(out.get('slp').Values.Time, ...
 out.get('slp').Values.Data);
grid on;
title('Slip'); xlabel('Time(sec)'); ylabel('Normalized Relative Slip');

5 Set the figure options for the test file custom_figures. Under Test File Options:

• Select Close all open figures at the end of execution. This option closes figures created by
your Test Manager MATLAB code.

• Select Store MATLAB figures.
6 With the test case or the test file selected, click Run.
7 In the Results and Artifacts pane, select the test case under the results for this test run. Click

the links under MATLAB Figures to see the plots generated when the test ran. The plot
generated by the code you entered appears under Custom Criteria.

Include Figures in a Report
You can select the MATLAB Figures option in the Create Test Results Report dialog box to include
custom figures in your report. Alternatively, you can set report options under Test File Options. The
Test File Options settings are saved with the test file.

1 Select the test file custom_figures.
2 Under Test File Options, select Generate report after execution. The section expands,

displaying the same report options you can set using the dialog box.
3 To see the figures regardless of how the tests performed, set Results for to All Tests.
4 Select the MATLAB figures check box.
5 With the test file selected, run the test. Running the test generates the report and opens it in the

PDF viewer.
6 Examine the report. The plot generated by the code you entered under Custom Criteria appears

in the report section Custom Criteria Plots.

6 Test Manager Test Cases

6-174

See Also
sltest.testmanager.Options | getOptions (TestSuite) | getOptions (TestCase) |
getOptions (TestFile)

Related Examples
• “Export Test Results” on page 7-16

 Create, Store, and Open MATLAB Figures

6-175

Test Models Using MATLAB Unit Test
In this section...
“Overall Workflow” on page 6-176
“Considerations” on page 6-176
“Comparison of Test Nomenclature” on page 6-176
“Basic Workflow Using MATLAB® Unit Test” on page 6-177

You can use the MATLAB Unit Test framework to run tests authored in Simulink Test. Using the
MATLAB Unit Test framework:

• Allows you to execute model tests together with MATLAB Unit Test scripts, functions, and classes.
• Enables model and code testing using the same framework.
• Enables integration with continuous integration (CI) systems, such as Jenkins®.

Overall Workflow
To run tests with MATLAB Unit Test:

1 Create a TestSuite from the Simulink Test file.
2 Create a TestRunner.
3 Create plugin objects to customize the TestRunner. For example:

• The matlab.unittest.plugins.TAPPlugin produces a results stream according to the
Test Anything Protocol for use with certain CI systems.

• The sltest.plugins.ModelCoveragePlugin specifies model coverage collection and
makes coverage results accessible from the command line.

4 Add the plugins to the TestRunner.
5 Run the test using the run method, or run tests in parallel using the runInParallel method.

Considerations
When running tests using MATLAB Unit Test, consider the following:

• If you disable a test in the Test Manager, the test is filtered using MATLAB Unit Test, and the
result reflects a failed assumption.

Comparison of Test Nomenclature
MATLAB Unit Test has analogous properties to the functionality in Simulink Test. For example,

• If the test case contains iterations, the MATLAB Unit Test contains parameterizations.
• If the test file or test suite contains callbacks, the MATLAB Unit Test contains one or more

callbacks fixtures.

Test Case Iterations and MATLAB Unit Test parameterizations

parameterization details correspond to properties of the iteration.

6 Test Manager Test Cases

6-176

Simulink Test MATLAB Unit Test
Iteration type: Scripted parameterization property: ScriptedIteration
Iteration type: Table parameterization property: TableIteration
Iteration name parameterization Name
Test case iteration object parameterization Value

Test Callbacks and MATLAB Unit Test Fixtures

Fixtures depend on callbacks contained in the test file. Fixtures do not include test case callbacks,
which are executed with the test case itself.

Callbacks in Simulink Test Fixtures in MATLAB Unit Test
Test file callbacks FileCallbacksFixture
Test suite callbacks SuiteCallbacksFixture
File and suite callbacks Heterogeneous CallbacksFixture, containing

FileCallbacksFixture and
SuiteCallbacksFixture

No callbacks No fixture

Basic Workflow Using MATLAB® Unit Test
This example shows how to create and run a basic MATLAB® Unit Test for a test file created in
Simulink® Test™. You create a test suite, run the test, and display the diagnostic report.

Before running this example, temporarily disable warnings that result from verification failures.

warning off Stateflow:Runtime:TestVerificationFailed;
warning off Stateflow:cdr:VerifyDangerousComparison;

1. Author a test file in the Test Manager, or start with a preexisting test file. For this example,
AutopilotTestFile tests a component of an autopilot system against several requirements, using
verify statements.

2. Create a TestSuite from the test file.

apsuite = testsuite('AutopilotTestFile.mldatx');

3. Run the test, creating a TestResult object. The command window returns warnings from the
verify statement failures.

apresults = run(apsuite);

Running AutopilotTestFile > Basic Design Test Cases

==
Verification failed in AutopilotTestFile > Basic Design Test Cases/Requirement 1.3 Test.

 Framework Diagnostic:

 Errors running test case
 --> Errors:
 No system or file called 'RollAutopilotMdlRef' found. 'RollAutopilotMdlRef' is used in

 Test Models Using MATLAB Unit Test

6-177

 Create a New Data Symbol
 Create a New Test Step
 Create a New Test Step
 Generate a Customized Test Specification Report
 Generate a Test Specification Report
 Collect Model Coverage with MATLAB® Unit Test
 Requirements-Based Testing for Model Development
 Test Harness Callback Example.
 --> Simulink Test Manager Results:
 Results: 2022-Feb-27 02:46:15/AutopilotTestFile/Basic Design Test Cases/Requirement 1.3 Test
==
.
Done AutopilotTestFile > Basic Design Test Cases

Failure Summary:

 Name Failed Incomplete Reason(s)
 ===
 AutopilotTestFile > Basic Design Test Cases/Requirement 1.3 Test X Failed by verification.

4. To view the details of the test, display the Report property of the DiagnosticRecord object. The
record shows that a verification failed during the test.

apresults.Details.DiagnosticRecord.Report

ans =
 'Verification failed in AutopilotTestFile > Basic Design Test Cases/Requirement 1.3 Test.

 Framework Diagnostic:

 Errors running test case
 --> Errors:
 No system or file called 'RollAutopilotMdlRef' found. 'RollAutopilotMdlRef' is used in
 Create a New Data Symbol
 Create a New Test Step
 Create a New Test Step
 Generate a Customized Test Specification Report
 Generate a Test Specification Report
 Collect Model Coverage with MATLAB® Unit Test
 Requirements-Based Testing for Model Development
 Test Harness Callback Example.
 --> Simulink Test Manager Results:
 Results: 2022-Feb-27 02:46:15/AutopilotTestFile/Basic Design Test Cases/Requirement 1.3 Test'

Enable warnings.

warning on Stateflow:Runtime:TestVerificationFailed;
warning on Stateflow:cdr:VerifyDangerousComparison;

See Also
Test | TestResult | TestRunner | TestSuite | matlab.unittest.plugins Package

6 Test Manager Test Cases

6-178

Related Examples
• “Output Results for Continuous Integration Systems” on page 6-180
• “Run Tests for Various Workflows”

 Test Models Using MATLAB Unit Test

6-179

Output Results for Continuous Integration Systems
In this section...
“Test a Model for Continuous Integration Systems ” on page 6-180
“Model Coverage Results for Continuous Integration” on page 6-182

You can create model tests that are compatible with continuous integration (CI) systems such as
Jenkins. To create CI-compatible results, run your Simulink Test files using MATLAB Unit Test.

To run CI-compatible tests, follow this general procedure:

1 Create a test suite from the MLDATX test file.
2 Create a test runner.
3 Create plugins for the test output or coverage results.

• For test outputs, use the TAPPlugin or XMLPlugin.
• For model coverage, use the ModelCoveragePlugin and CoberturaFormat. When

collecting model coverage in Cobertura format:

• Only top model coverage is reflected in the Cobertura XML.
• Only model Decision coverage is reflected, and it is mapped to Condition elements in

Cobertura XML.
4 Create plugins for CI-compatible output.
5 Add the plugins to the test output or coverage results.
6 Add the test output plugins or coverage result plugins to the test runner.
7 Run the test.

Test a Model for Continuous Integration Systems
This example shows how to test a model, publish Test Manager results, and output results in TAP
format with a single execution.

You use MATLAB® Unit Test to create a test suite and a test runner, and customize the runner with
these plugins:

• matlab.unittest.plugins.TestReportPlugin produces a MATLAB Test Report.
• sltest.plugins.TestManagerResultsPlugin adds Test Manager results to the MATLAB Test

Report.
• matlab.unittest.plugins.TAPPlugin outputs results to a TAP file.

The test case creates a square wave input to a controller subsystem and sweeps through 25 iterations
of parameters a and b. The test compares the alpha output to a baseline with a tolerance of 0.0046.
The test fails on those iterations in which the output exceeds this tolerance.

Before running this example, ensure that the working folder is writable.

1. Open the Simulink® Test™ test file.

testfile = fullfile('f14ParameterSweepTest.mldatx');
sltest.testmanager.view;
sltest.testmanager.load(testfile);

6 Test Manager Test Cases

6-180

2. In the Test Manager, configure the test file for reporting.

Under Test File Options, select Generate report after execution. The section expands, displaying
several report options. For more information, see “Save Reporting Options with a Test File” on page
7-17.

3. Create a test suite from the Simulink® Test™ test file.

import matlab.unittest.TestSuite

suite = testsuite('f14ParameterSweepTest.mldatx');

4. Create a test runner.

import matlab.unittest.TestRunner

f14runner = TestRunner.withNoPlugins;

5. Add the TestReportPlugin to the test runner.

The plugin produces a MATLAB Test Report F14Report.pdf.

import matlab.unittest.plugins.TestReportPlugin

pdfFile = 'F14Report.pdf';
trp = TestReportPlugin.producingPDF(pdfFile);
addPlugin(f14runner,trp)

6. Add the TestManagerResultsPlugin to the test runner.

The plugin adds Test Manager results to the MATLAB Test Report.

import sltest.plugins.TestManagerResultsPlugin

tmr = TestManagerResultsPlugin;
addPlugin(f14runner,tmr)

7. Add the TAPPlugin to the test runner.

The plugin outputs to the F14Output.tap file.

import matlab.unittest.plugins.TAPPlugin
import matlab.unittest.plugins.ToFile

tapFile = 'F14Output.tap';
tap = TAPPlugin.producingVersion13(ToFile(tapFile));
addPlugin(f14runner,tap)

8. Run the test.

Several iterations fail, in which the signal-baseline difference exceeds the tolerance criteria.

result = run(f14runner,suite);

Generating test report. Please wait.
 Preparing content for the test report.

 Adding content to the test report.
 Writing test report to file.

 Output Results for Continuous Integration Systems

6-181

Test report has been saved to:
 C:\TEMP\Bdoc22a_1891349_13144\ibC86E06\8\tp9b068255\simulinktest-ex40056435\F14Report.pdf

A single execution of the test runner produces two reports:

• A MATLAB Test Report that contains Test Manager results.
• A TAP format file that you can use with CI systems.

sltest.testmanager.clearResults
sltest.testmanager.clear
sltest.testmanager.close

Model Coverage Results for Continuous Integration
This example shows how to generate model coverage results for use with continuous integration.
Coverage is reported in the Cobertura format. You run a Simulink® Test™ test file using MATLAB®
Unit Test.

1. Import classes and create a test suite from the test file AutopilotTestFile.mldatx.

import matlab.unittest.TestRunner

aptest = sltest.testmanager.TestFile('AutopilotTestFile.mldatx');
apsuite = testsuite(aptest.FilePath);

2. Create a test runner.

trun = TestRunner.withNoPlugins;

3. Set the coverage metrics to collect. This example uses decision coverage. In the Cobertura output,
decision coverage is listed as condition elements.

import sltest.plugins.coverage.CoverageMetrics

cmet = CoverageMetrics('Decision',true);

4. Set the coverage report properties. This example produces a file R13Coverage.xml in the current
working folder. Ensure your working folder has write permissions.

import sltest.plugins.coverage.ModelCoverageReport
import matlab.unittest.plugins.codecoverage.CoberturaFormat

rptfile = 'R13Coverage.xml';
rpt = CoberturaFormat(rptfile)

rpt =
 CoberturaFormat with no properties.

5. Create a model coverage plugin. The plugin collects the coverage metrics and produces the
Cobertura format report.

import sltest.plugins.ModelCoveragePlugin

mcp = ModelCoveragePlugin('Collecting',cmet,'Producing',rpt)

6 Test Manager Test Cases

6-182

mcp =
 ModelCoveragePlugin with properties:

 RecordModelReferenceCoverage: '<default>'
 MetricsSettings: [1x1 sltest.plugins.coverage.CoverageMetrics]

6. Add the coverage plugin to the test runner.

addPlugin(trun,mcp)

% Turn off command line warnings:
warning off Stateflow:cdr:VerifyDangerousComparison
warning off Stateflow:Runtime:TestVerificationFailed

7. Run the test.

APResult = run(trun,apsuite)

APResult =
 TestResult with properties:

 Name: 'AutopilotTestFile > Basic Design Test Cases/Requirement 1.3 Test'
 Passed: 0
 Failed: 1
 Incomplete: 0
 Duration: 1.3589
 Details: [1x1 struct]

Totals:
 0 Passed, 1 Failed, 0 Incomplete.
 1.3589 seconds testing time.

8. Reenable warnings.

warning on Stateflow:cdr:VerifyDangerousComparison
warning on Stateflow:Runtime:TestVerificationFailed

See Also
TestRunner | TestSuite | sltest.plugins.ModelCoveragePlugin |
sltest.plugins.TestManagerResultsPlugin |
matlab.unittest.plugins.TestReportPlugin | matlab.unittest.plugins.TAPPlugin

More About
• “Test Models Using MATLAB Unit Test” on page 6-176

 Output Results for Continuous Integration Systems

6-183

Parametric Sweep for a Simscape Thermal Model
This example shows how to test a physical system, and how to optimize a parameter using a test
harness, test sequence, and the test manager. The example uses a system-level thermal model of a
projector which includes Simscape® thermal blocks.

Set Up Variables

Set the required variables for the example.

Model = 'sltestProjectorFanSpeedExample';
Harness = 'FanSpeedTestHarness';
TestSuite = 'sltestProjectorFanSpeedTestSuite.mldatx';
open_system(Model);

Test Plan and System Requirements

This test demonstrates sweeping through several fan speeds to determine the optimal value. In short,
the optimal fan speed results in the fastest response without damaging the system. In detail, the
optimal fan speed:

• Prevents the system from exceeding the specified maximum temperature.
• Minimizes the time for the system to reach the temperature at which the lamp emits visible light.

The document sltestProjectorFanSpeedExampleRequirements.slreqx captures these
detailed requirements and the test procedure.

Test-specific model items reside in the test harness, keeping main models free of unnecessary blocks,
suitable for code generation, and suitable for integration with other models.

Open the Test File

Open the Test Manager to view the test suite controlling the parameter sweep. From the model, open
the Simulink Test app and click on Simulink Test Manager. Open the file referenced by
TestSuite. You can also enter

open(TestSuite)

6 Test Manager Test Cases

6-184

Description of the Test

The test investigates the transient and steady-state thermal characteristics of the system. The test
sequence initializes the system to ambient temperature, then powers the projector lamp. When the
system reaches a steady-state condition, the lamp switches off. This test is modeled in a test harness
using a Test Sequence block. Run the following to open the test harness:

sltest.harness.open(Model,Harness);

Requirements Linking

The test suite contains links to the requirements document. You can view the requirements link by
opening the test suite in the Test Browser, and clicking the links in the Requirements section.

The Test Sequence

Double-click the Test Sequence block to open the test sequence editor.

 Parametric Sweep for a Simscape Thermal Model

6-185

The T0out and T0in signals store the initial projector temperature at each test step.

PowerOnTime stores simulation time when the lamp signal activates. This facilitates subsequent data
analysis.

The transition condition detects the steady-state condition. At steady-state, the system temperature
change is a small fraction (Threshold) of the difference between the current projector temperature
and the initial projector temperature at each step. This condition must hold for a minimum time
DurationLimit, in this case 10 seconds.

You may link the steps in the test sequence blocks against prepopulated requirements in the
requirements document sltestProjectorFanSpeedExampleRequirements.slreqx.

Description of the Parameter Sweep

The pre-load callbacks contain the command to set the fan speed for each test case under the Fan
Speed Parametric Study test suite. The parameter overrides contain the command to recalculate
fan airflow from fan speed, and then override the test harness parameter. You can view these
commands in the Callbacks and Parameter Overrides section of each test case.

Run the Test

In the Test Browser, highlight Fan Speed Parametric Study and click Run. When the test suite
simulation completes, open the results for each test case and select ProjectorTemp. View the
results in the Test Manager.

6 Test Manager Test Cases

6-186

Export the Data

With the Test Manager you can export data for post-processing. In the Results and Artifacts pane of
the Test Manager, right-click Sim Output for each test case and select Export.

This example includes the exported data in four MAT files, located in the example folder:

ProjectorTempFanSpeed800.mat
ProjectorTempFanSpeed1300.mat
ProjectorTempFanSpeed1800.mat
ProjectorTempFanSpeed2300.mat

Investigate Response Time and Maximum Projector Temperature

Since the test sequence transitions execute when the system reaches steady-state, and the fan speed
changes the system response, the lamp activates at different simulation times for each of the four test
cases. Simplify the graphical results analysis by plotting each response with the lamp activation at
the same time.

Extract the lamp activation response data, and plot the system response for the four fan speeds.
Evaluate the results against these criteria:

• The temperature shall not exceed 65 deg C.
• The lamp emits visible light above 45 deg C. Minimize the time to reach this temperature.

Load the results. At the command line, enter

DataAt800 = load('ProjectorTempFanSpeed800.mat');
DataAt1300 = load('ProjectorTempFanSpeed1300.mat');

 Parametric Sweep for a Simscape Thermal Model

6-187

DataAt1800 = load('ProjectorTempFanSpeed1800.mat');
DataAt2300 = load('ProjectorTempFanSpeed2300.mat');

The script ArrangeProjectorData.m arranges the temperature and power on data from the output
for each run.

ArrangeProjectorData

The script PlotProjectorThermalResponse.m plots the thermal response of the projector after
the lamp activates, for each of the fan speeds.

PlotProjectorThermalResponse

Results Interpretation

The results show that while the highest fan speed results in the lowest maximum temperature, it also
takes the longest time to reach the lamp activation temperature. The lowest fan speed results in the
fastest lamp activation, but the system exceeds the maximum specified temperature by a significant
margin.

Fan speed = 1300 keeps the system under the maximum temperature spec, and the system also
reaches lamp activation temperature approximately 3 seconds faster than with the highest fan speed.

close_system(Model,0);

clear Model;
clear Harness;

6 Test Manager Test Cases

6-188

clear TestSuite;
close(figure(1));

See Also
Test Manager | Test Sequence

More About
• “Create Test Harnesses and Select Properties” on page 2-12

 Parametric Sweep for a Simscape Thermal Model

6-189

Projector Controller Testing Using verify and Real-Time Tests
Perform real-time testing on a target computer and verify simulation and real-time results.

This example demonstrates testing a projector control system using model simulation and real-time
execution on a target computer. The tests verify the controller by using test sequence scenarios that
exercise the top-level controller model. The controller uses a push button input and a temperature
sensor input, and outputs signals controlling the fan, fan speed, and projector lamp.

This example uses Simulink® Real-Time™. Before beginning, review the Simulink Real-Time system
requirements.

Set the test file, model, and internal harness names for the example.

testFile = 'sltestProjectorCtrlTests.mldatx';
model = 'sltestProjectorController';
testharness = 'Test_Scenarios';

Open the model.

open_system(model)

View the Test Harness

Open the Test_Scenarios internal test harness.

sltest.harness.open(model,testharness);

The test harness uses a Test Sequence block to define the test scenarios and a Test Assessment block
to verify the results.

In the test harness, open the Test Sequence block to view the scenarios, which are defined in tabs.

6 Test Manager Test Cases

6-190

https://www.mathworks.com/products/availability.html#XP
https://www.mathworks.com/products/availability.html#XP

Open the Test Assessment block to view the verify statements.

 Projector Controller Testing Using verify and Real-Time Tests

6-191

Open the Test File and Configure the Real-Time Target Computer

Open the test file in the Test Manager by entering:

open(testFile)

The test file contains a test suite with two test cases, each of which tests the four test scenarios. The
Simulation_Tests test case simulates the model, and the HIL_Tests test case runs the tests on a
real-time target computer.

Before running the example:

1 Configure your target computer using the Simulink Real-Time Explorer.
2 Connect to your target computer.
3 If your target computer is not the default target, update Target Computer in the HIL_Tests test

case's System Under Test section.

For more information on real-time configuration see “System Configuration” (Simulink Real-Time).

Run the Model Simulation Tests

Run the Simulation_Tests test case. After simulation completes, click the Results and Artifacts
pane in the test manager.

Expand the Simulation_Tests results and each scenario to see the Verify Statements results. The
verify statements demonstrate fail, pass, and untested results:

• In all all scenarios except Basic_Overheat, the controller does not operate in high-temperature or
overheat mode, so the verify_overheat and verify_high_temp statements of the associated
verify statements are untested.

• In all scenarios, the controller passes the test that if the lamp is on, the fan is also on:
verify_lamp_implies_fan.

• In the Overheat_Shutoff scenario, the controller passes the test that the system stays off if the
on_off button is pressed when the temperature is above a limit: verify_sc4_on. For other
scenarios, verify_sc4_on is untested.

• In only the Overheat_Shutoff scenario, the controller fails the test that the system shuts off if the
on_off button is pressed when the temperature is above a limit: verify_sc4_off. Resolving this
failure requires modifying the OnOff Check subsystem in the main model.

For more information, see “Assess Model Simulation Using verify Statements” on page 3-18.

In the Overheat_Shutoff scenario, select the verify_sc4_off, verify_lamp_implies_fan,
and verify_overheat results to visualize the verify statement results.

6 Test Manager Test Cases

6-192

Execute the Real-Time Tests and Review the Results

The real-time test case (HIL_Tests) verifies that real-time execution results match model simulation
results, and that the verify statements pass.

In the Test Manager, run the real-time test case (HIL_Tests).

The Results of the Simulation_Tests and HIL_Tests show matching pass, fail, and untested statuses.

In the Overheat_Shutoff scenario, select the verify_sc4_off, verify_lamp_implies_fan,
and verify_overheat results to visualize the verify statement results. The Verify Statements
section shows similar results to the model simulation.

 Projector Controller Testing Using verify and Real-Time Tests

6-193

close_system(testharness,0)
close_system(model,0)
sltest.testmanager.clear;
sltest.testmanager.clearResults;
sltest.testmanager.close
clear testFile testHarness model;

6 Test Manager Test Cases

6-194

Test Execution Order
When you execute a test, Simulink Test opens the model to be tested, runs callback functions, closes
the functions, and cleans up. The order in which tests execute depends on:

• Whether you run a single test case or run a test suite containing one or more test cases
• The number of models tested
• The number of test cases

For serial simulations, the test cases run in the order they are listed in the Test Manager. To change
the order in which test cases run in the Test Manager, drag and drop test cases into the desired order
in the Test Browser pane. You cannot drag and drop test suites. If you run your simulations in
parallel mode, the test cases might not run in the order displayed in the Test Manager.

If your test cases include callbacks, note that disp and fprintf do not work in callbacks. To verify
that the callbacks are executed, use a MATLAB script that includes breakpoints in the callbacks.

Single Test Case on a Single Model
If you select a specific test case to run on a single model and the model is not open before the test
runs, the execution order is:

1 Run test case Pre-Load callback.
2 Run model PreLoadFcn callback.
3 Load model.
4 Run model PostLoadFcn callback.
5 Run test case Post-Load callback.
6 Simulate model.
7 Run test case Cleanup callback.
8 Run model CloseFcn callback.

If you run a test suite that contains a test case, the test suite Setup callback runs before the first
step and the test suite Cleanup callback runs after the last step.

Multiple Test Cases on Multiple Models
If you run multiple test cases that run on separate models and the models are not open before the
test runs, the execution order, which is shown for two test cases run on two models, is:

1 Run test case 1 Pre-Load callback.
2 Run model 1 PreLoadFcn callback.
3 Load model 1.
4 Run model 1 PostLoadFcn callback.
5 Run test case 2 Pre-Load callback.
6 Run model 2 PreLoadFcn callback.
7 Load model 2.

 Test Execution Order

6-195

8 Run model 2 PostLoadFcn callback.
9 Run test case 1 Post-Load callback.
10 Simulate model 1 for test case 1.
11 Run test case 1 Cleanup callback.
12 Run test case 2 Post-Load callback.
13 Simulate model 2 for test case 2.
14 Run test case 2 Cleanup callback.
15 Run model 2 CloseFcn callback.
16 Run model 1 CloseFcn callback.

If you run a test suite that includes test cases, the test suite Setup callback runs before the first step
and the test suite Cleanup callback runs after the last step.

Multiple Test Cases in a Single Test Suite on a Single Model
If you run multiple test cases in a test suite on a single model and the model is not open before the
test runs, the execution order, which is shown for two test cases, is:

1 Run test case 1 Pre-Load callback
2 Run model PreLoadFcn callback
3 Load model
4 Run model PostLoadFcn callback
5 Run test case 2 Pre-Load callback
6 Run test case 1 Post-Load callback
7 Simulate model
8 Run test case 1 Cleanup callback
9 Run test case 2 Post-Load callback
10 Simulate model
11 Run test case 2 Cleanup callback
12 Run model CloseFcn callback

When a test suite runs multiple test cases on the same model, the model is kept open between test
executions. As a result, the code in the PreLoadFcn callback for the model is executed only when the
model is opened for the first test case.

If the model is open before the test runs, the execution order, which is shown for two test cases, is:

1 Run test case 1 Pre-Load callback
2 Run test case 2 Pre-Load callback
3 Run test case 1 Post-Load callback
4 Simulate model
5 Run test case 1 Cleanup callback
6 Run test case 2 Post-Load callback
7 Simulate model

6 Test Manager Test Cases

6-196

8 Run test case 2 Cleanup callback

Notice that the model PreLoadFcn and PostLoadFcn callbacks do not execute because the model is
already loaded before the test runs. The model CloseFcn callback does not execute either because
the model is left open after test completion.

Multiple Test Cases in Multiple Test Suites on a Single Model
Suppose you have two test suites that each contain two test cases, such as:

• Test suite 1

• Test case 1-1
• Test case 1-2

• Test suite 2

• Test case 2-1
• Test case 2-2

the execution order of the callbacks is:

1 Run test suite 1 Setup callback.
2 Run test suite 2 Setup callback.
3 Run test case 1-1 Pre-Load callback.
4 Run test case 1-2 Pre-Load callback.
5 Run test case 2-1 Pre-Load callback.
6 Run test case 2-2 Pre-Load callback.
7 Run test case 1-1 PostLoad callback.
8 Simulate model.
9 Run test case 1-1 Cleanup callback.
10 Run test case 1-2 Post-Load callback.
11 Simulate model.
12 Run test case 1-2 Cleanup callback.
13 Run test suite 1 Cleanup callback.
14 Run test case 2-1 Post-Load callback.
15 Simulate model.
16 Run test case 2-1 Cleanup callback.
17 Run test case 2-2 Post-Load callback.
18 Simulate model.
19 Run test case 2-2 Cleanup callback.
20 Run test suite 2 Cleanup callback.

Test Case with Parameter Overrides
For a test case with parameter overrides, the execution order is:

 Test Execution Order

6-197

1 Run test case Pre-Load callback.
2 Load model.
3 Read parameter overrides, which triggers a model update.
4 Run test case Post-Load callback.
5 Simulate model.
6 Run test case Cleanup callback.
7 Run model CloseFcn callback.

6 Test Manager Test Cases

6-198

Filter Test Execution and Results
In this section...
“Add Tags” on page 6-199
“Filter Tests and Results” on page 6-199
“Run Filtered Tests” on page 6-199

You can run a subset of tests or view a subset of test results by filtering test tags. Tags are a property
of the test case, test suite, or test file.

Add Tags
Add comma-separated tags to the Tags section in the Test Browser. Tags cannot contain spaces;
spaces are corrected to commas.

Filter Tests and Results
In the text box at the top of the Test Browser or Results and Artifacts pane, filter tests by entering
tags: id1, id2, ... where id1 and id2 are example test tags. Enter multiple tags separated by
commas to return tests containing any tag in the list.

Run Filtered Tests
To run a subset of tests

1 Filter the tests using tags.
2 In the toolstrip, click the down arrow below Run and select Run Filtered.

 Filter Test Execution and Results

6-199

Test Manager Results and Reports

• “View Test Case Results” on page 7-2
• “Debugging Test Failures Using Model Slicer” on page 7-7
• “Export Test Results” on page 7-16
• “Generate Test Results Reports” on page 7-17
• “Generating a Test Results Report” on page 7-20
• “Customize Test Results Reports” on page 7-21
• “Append Code to a Test Report” on page 7-25
• “Results Sections” on page 7-27
• “Generate Test Specification Reports” on page 7-30
• “Customize Test Specification Reports” on page 7-34
• “Debugging Equivalence Test Failures Using Model Slicer” on page 7-41

7

View Test Case Results
In this section...
“View Results Summary” on page 7-2
“Visualize Test Case Simulation Output and Criteria” on page 7-3

After a test case has finished running in the Test Manager, the test case result becomes available in
the Results and Artifacts pane. Test results are organized in the same hierarchy as the test file, test
suite, and test cases that were run from the Test Browser pane. In addition, the Results and
Artifacts pane shows the criteria results and simulation output, if applicable to the test case.

View Results Summary
The test case results tab gives a high-level summary and other information about an individual test
case result. To open the test case results tab:

1 Select the Results and Artifacts pane.

2 Double-click a test case result.

A tab opens containing the test case results information.

7 Test Manager Results and Reports

7-2

Visualize Test Case Simulation Output and Criteria
You can view signal data from simulation output or comparisons of signal data used in baseline or
equivalence criteria.

To view simulation output from a test case:

1 Select the Results and Artifacts pane.
2 Expand the Sim Output section of the test case result.
3 Select the check box of signals you want to plot.

 View Test Case Results

7-3

The Visualize tab appears and plots the signals.

To view equivalence or baseline criteria comparisons:

1 Select the Results and Artifacts pane.
2 Expand the Baseline Criteria Result or Equivalence Criteria Result section of the test case

result.

7 Test Manager Results and Reports

7-4

3 Select the option button of the signal comparison you want to plot.

The Comparison tab appears and plots the signal comparison.

To see an example of creating a test case and viewing the results, see “Compare Model Output to
Baseline Data” on page 6-7.

 View Test Case Results

7-5

Note When you run a test multiple times, by default the new signals are added to the plot from
previous test runs. To instead overwrite the plots with only the new results, right-click Sim Output
and select Plot Signals > Overwrite.

See Also
Test Manager

More About
• “Collect Coverage in Tests” on page 6-124

7 Test Manager Results and Reports

7-6

Debugging Test Failures Using Model Slicer
This example shows how to debug Simulink Test baseline and verification failures by using the Model
Slicer. A predefined baseline test case is provided for use with the sltestDemo_fuelsys model.

The baseline is captured from an earlier state of the model. After capturing the baseline, a design
error is introduced in the model, which causes the baseline test to fail. Then, the Model Slicer is used
to debug the failure and localize the design error.

Step 1: Setting Up the Artifacts

This section describes how to run the test case and view the results.

1. Open the sltestDemo_fuelsys model.

open_system('sltestDemo_fuelsys');

2. Click APPS > Model Verification, Validation, and Test > Simulink Test to open the Simulink
Test toolstrip.

3. Click Tests > Simulink Test Manager to open the Test Manager.

4. To open the existing test file, from the Test Manager toolstrip, click Open and select
slTestBaselineFailureEx.

5. After the test file loads, select New Test Case1 in the Test Browser pane.

 Debugging Test Failures Using Model Slicer

7-7

https://www.mathworks.com/help/slcheck/functional-dependency-isolation.html
https://www.mathworks.com/help/slcheck/functional-dependency-isolation.html

6. Click Run.

7. The new test results appear at the top of the Results and Artifacts pane. Right-click the result
and select Expand All Under, so that you see the Baseline Criteria Result and the Verify
Statements.

7 Test Manager Results and Reports

7-8

Observe that four signals have failed: air_fuel_ratio, ego, fuel, and FeuelModeAssertion.
This example uses the failed fuel signal to illustrate the debugging workflow.

Step 2: Entering Debug Session

This section describes how to setup the Model Slicer for debugging the failed fuel signal.

1. To compare the fuel signals between the model and the baseline, expand the Baseline Criteria
Result and select the radio button next to the fuel signal. Likewise, to debug a verify signal, expand
the Verify Statements and select the failed verify signal. Another way to select a failed signal is from
the Signal to Debug dropdown list in the toolbar.

In the plot area, compare the model output to the baseline data.

 Debugging Test Failures Using Model Slicer

7-9

2. Click Debug in the TOOLS section of the toolstrip. Note that the Debug option is enabled only
when a failed baseline or verify signal is plotted.

The DEBUG tab replaces all existing toolstrip tabs. Multiple Test Manager options are hidden or
disabled to create the debug environment.

3. To set up the Model Slicer, click Debug Using Slicer.

Debug Using Slicer prepares the debugging session by:

1 Rerunning the test case and creating new debugging results. This makes sure that the failure
still exists in the current state of the test model.

2 Launching the Model Slicer on the test model.
3 Automatically plotting the selected failed signal in the debugging results, and setting the failed

signal as the starting time point.

7 Test Manager Results and Reports

7-10

4 Pausing the simulation at the model start time to continue debugging.

Step 3: Debugging using Model Slicer

This section explains how to focus in on the reason for the failure by using the debugging features of
the Model Slicer.

1. Use the Step Back/Step Forward buttons to move one step back or forward in simulation time.
The left data cursor moves to the current simulation time. Observe the changes in the data
dependencies by noting the changed model highlighting and port value labels for the active signals at
every time stamp.

You can also use Run/Continue/Stop to run a new simulation, or complete or stop the current
simulation.

2. In the Test Manager, click Continue to Failure to continue the model simulation to the beginning
of the next failure region. The data cursors show the bounds of the failure region.

 Debugging Test Failures Using Model Slicer

7-11

Observe these changes at the failure:

• Simulation pauses at T = 4.81.
• Data cursors update accordingly.
• Difference between the Baseline and Sim Output is 0.007.

From the Model Slicer highlighting, you can find the cause of this difference, and see that the
sltestDemo_fuelsys/To Plant/fuel value depends on sltestDemo_fuelsys/To Plant.

7 Test Manager Results and Reports

7-12

3. Open sltestDemo_fuelsys/To Plant. Notice that there is no change in the value being
propagated.

4. Open sltestDemo_fuelsys/fuel_rate_control.

Observe that the fb_correction value is 0. The difference between the Baseline and the Sim
Output is 0.007, which is a small value. It might be that fb_correction is not calculated correctly.

5. Open sltestDemo_fuelsys/fuel_rate_control/airflow_calc, which computes the
fb_correction, and observe the data dependencies.

 Debugging Test Failures Using Model Slicer

7-13

Notice that the constant, 0, is being passed through the sltestDemo_fuelsys/
fuel_rate_control/airflow_calc/hold integrator switch block. To determine why the
control port evaluates to false for the switch block, the control dependencies need to be highlighted
on the model.

6. Enable Display Control Dependencies from the Simulation Time Window section in the Model
Slicer Dialog docked on the model.

Observe that:

• sltestDemo_fuelsys/fuel_rate_control/airflow_calc/fuel_mode value is LOW, but
fb_correction is still zero.

• fuel_mode is compared to sltestDemo_fuelsys/fuel_rate_control/airflow_calc/
Enumerated Constant, which evaluates to false.

The Enumerated Constant value is set to sld_FuelModes.RICH. It should be checking against the
fuel_mode value sld_FuelModes.LOW.

Step 4: Incorporating the fix

1. Exit the debugging session by clicking SESSION > Close Debug.

2. Open the model and update the sltestDemo_fuelsys/fuel_rate_control/airflow_calc/
Enumerated Constant value to sld_FuelModes.LOW.

3. Save the model.

4. Run the test case and view the results.

Now, observe that the test results show the test as having passed.

7 Test Manager Results and Reports

7-14

Capabilities and Limitations

• If you use the Test Manager to set a simulation mode to one other than normal mode, such as SIL
or PIL, you cannot use the Model Slicer for debugging.

• If the simulation mode is set in the model configuration, the Model Slicer changes the mode of the
model and all referenced models to run in normal mode and then, you can use the Model Slicer for
debugging.

• For models that do not support Fast Restart mode, the SIMULATION section of the toolstrip is
disabled. Use the ANALYSIS section to debug the failure.

• The ANALYSIS section is available only when the model is not simulating, such as when you click
Continue or Stop in the SIMULATION section. It highlights a time region instead of a time step.
To define a time region, move the data cursors manually, or use Next Failure or Previous
Failure. Then, you can use Update Slicer Highlight to update the model highlighting for the
defined time slice.

• The Results must be generated from the current release.

 Debugging Test Failures Using Model Slicer

7-15

Export Test Results
Once you have run test cases and generated test results, you can export results and generate reports.
Test case results appear in the Results and Artifacts pane.

Test results are saved separately from the test file. To save results, select the result in the Test
Manager, in the Results and Artifacts pane, and click Export on the toolstrip.

• Select complete result sets to export to a MATLAB data export file (.mldatx).

• Select criteria comparisons or simulation output to export signal data to the base workspace or to
a MAT-file.

See Also

Related Examples
• “Generating a Test Results Report” on page 7-20

More About
• “Generate Test Results Reports” on page 7-17

7 Test Manager Results and Reports

7-16

Generate Test Results Reports

Create a Test Results Report
Result reports contain report overview information, the test environment, results summaries with test
outcomes, comparison criteria plots, and simulation output plots. You can customize the information
included in the report, and you can save the report in three different file formats: ZIP (HTML), DOCX,
and PDF.

1 In the Test Manager, in the Results and Artifacts pane, select results for a test file, test suite,
or test case.

Note You can create a report from multiple result sets, but you cannot create a report from
multiple test files, test suites, or test cases within results sets.

2 In the toolstrip, click Report.
3 Enter the title page information and specify the information you want to include in the report. To

enable the option to specify the number of plots per page, select Plots for simulation output
and baseline.

4 Select the File Format to use for the generated file.
5 Click Create.

Save Reporting Options with a Test File
You can generate a report every time you run a test case in a test file, using the same report settings
each time. To generate a report each time you run the test, set options under Test File Options.
These settings are saved with the test file.

1 In the Test Browser pane, select the test file whose report options you want to set.
2 Under Test File Options, select Generate report after execution. The section expands,

displaying the same report options you can set using the dialog box.
3 Set the options. To include figures generated by callbacks or custom criteria, select MATLAB

figures. For more information, see “Create, Store, and Open MATLAB Figures” on page 6-173.
4 Store the settings with your test file. Save the test file.
5 If you want to generate a report using these settings, select the test file and run the test.

Generate Reports Using Templates
Microsoft Word Format

If you have a MATLAB Report Generator™ license, you can create reports from a Microsoft Word
template. The resulting report is a Microsoft Word document.

The report generator in Simulink Test fills information into rich text content controls in your
Microsoft Word template document. For more information on how to use rich text content controls or
customize part templates, see the MATLAB Report Generator documentation, such as “Add Holes in a
Microsoft Word Template” (MATLAB Report Generator).

For a sample template, go to the path:

 Generate Test Results Reports

7-17

cd(matlabroot);
cd('help\toolbox\sltest\examples');

In the examples folder, open the file Template.dotx.

In the Microsoft Word template, you can add rich text content controls. Each Simulink Test report
section can be inserted into the rich text content controls. The control names are:

• ChapterTitle — report title
• ChapterTestPlatform — version of MATLAB used to execute tests
• ChapterTOC — test results table of contents
• ChapterBody — test results

For example, the chapter title rich text content control appears in the Microsoft Word template as:

To change the control name, right-click the rich text content control and select Properties. Specify
the control name, ChapterTitle or other name, in the Title and Tag field.

To generate a report from the Test Manager using a Microsoft Word template:

1 In the Test Manager, select the Results and Artifacts pane.
2 Select results for a test file, test suite, or test case.
3 In the toolstrip, click Report.
4 Enter the title page information and specify the information you want to include in the report.

7 Test Manager Results and Reports

7-18

5 Select DOCX for the File Format.
6 Specify the full path and file name of your Microsoft Word template in the Template File field.
7 Click Create.

PDF or HTML Formats

If you have a MATLAB Report Generator license, you can create reports from a PDF or HTML
template by using a PDFTX or HTMTX file. To generate a report from the Test Manager using a PDF or
HTML template:

1 In the Test Manager, select the Results and Artifacts pane.
2 Select results for a test file, test suite, or test case.
3 In the toolstrip, click Report.
4 Enter the title page information and specify the information you want to include in the report.
5 Select ZIP or PDF for the File Format. Selecting ZIP generates an HTML report.
6 Specify the full path and file name of your template in the Template File field. For PDF, use a

PDFTX file. For HTML, use an HTMTX file. For more information on creating templates, see
“Templates” (MATLAB Report Generator).

7 Click Create.

See Also

Related Examples
• “Generating a Test Results Report” on page 7-20
• “Templates” (MATLAB Report Generator)
• “Create, Store, and Open MATLAB Figures” on page 6-173

More About
• “Export Test Results” on page 7-16

 Generate Test Results Reports

7-19

Generating a Test Results Report
Report test results for a baseline test.

This example shows how to generate a test results report from the test manager using a baseline test
case. The model used for this example is sltestTestManagerReportsExample.

Load and run the test file

Load and run the test file programmatically using the test manager. The test file contains a baseline
test case that fails when it is run. The baseline criteria specified in the baseline test case does not
match the model simulation, which makes the test case fail.

exampleFile = 'sltestTestManagerReportsTestSuite.mldatx';
sltest.testmanager.load(exampleFile);
baselineObj = sltest.testmanager.run;

Generate the report

Generate a report of the test case results using the results set object. The report is saved as a ZIP
and shows all test results. The report opens when it is completed.

sltest.testmanager.report(baselineObj,'baselineReport.zip',...
 'IncludeTestResults',0,'IncludeComparisonSignalPlots',true,...
 'IncludeSimulationSignalPlots',true,'NumPlotRowsPerPage',3);

View the report when it is finished generating. In the baselineReport.zip folder, open the report.html
file. Notice that the overall baseline test case fails. The signals in baseline criteria do not match,
which causes the test failure. You can view the signal comparison plots in the report to verify the
failure.

sltest.testmanager.clear;
sltest.testmanager.clearResults;

See Also

More About
• “Generate Test Results Reports” on page 7-17

7 Test Manager Results and Reports

7-20

Customize Test Results Reports
In this section...
“Inherit the Report Class” on page 7-21
“Method Hierarchy” on page 7-21
“Modify the Class” on page 7-22
“Generate a Report Using the Custom Class” on page 7-24

You can choose how to format and aggregate test results by customizing reports. Use the
sltest.testmanager.TestResultReport class to create a subclass and then use the properties
and methods to customize how the Test Manager generates the results report. You can change font
styles, add plots, organize results into tables, include model images, and more. Using the custom
class, requires a MATLAB Report Generator license.

Inherit the Report Class
To customize the generated report, you must inherit from the
sltest.testmanager.TestResultReport class. After you inherit from the class, you can modify
the properties and methods. To inherit the class, add the class definition section to a new or existing
MATLAB script. The subclass is your custom class name, and the superclass that you inherit from is
sltest.testmanager.TestResultReport. For more information about creating subclasses, see
“Design Subclass Constructors”. Then, add code to the inherited class or methods to create your
customizations.

% class definition
classdef CustomReport < sltest.testmanager.TestResultReport
 %
 % Report customization code here
 %
end

Method Hierarchy
When you create the subclass, the derived class inherits methods from the
sltest.testmanager.TestResultReport class. The body of the report is separated into three
main groups: the result set block, the test suite result block, and the test case result block.

The result set block contains the result set table, the coverage table, and links to the table of
contents.

 Customize Test Results Reports

7-21

The test suite result block contains the test suite results table, the coverage table, requirements
links, and links to the table of contents.

The test case result block contains the test case and test iterations results table, the coverage table,
requirements links, signal output plots, comparison plots, test case settings, and links to the table of
contents.

Modify the Class
To insert your own report content or change the layout of the generated report, modify the inherited
class methods. For general information about modifying methods, see “Modify Inherited Methods”.

A simple modification to the generated report could be to add some text to the title page. The method
used here is addTitlePage.

% class definition
classdef CustomReport < sltest.testmanager.TestResultReport
 methods
 function this = CustomReport(resultObjects, reportFilePath)
 this@sltest.testmanager.TestResultReport(resultObjects,...
 reportFilePath);
 end
 end

 methods(Access=protected)
 function addTitlePage(obj)
 import mlreportgen.dom.*;

 % Add a custom message
 label = Text('Some custom content can be added here');
 append(obj.TitlePart,label);

 % Call the superclass method to get the default behavior
 addTitlePage@sltest.testmanager.TestResultReport(obj);
 end

7 Test Manager Results and Reports

7-22

 end
end

Click here for a code file of this example.

A more complex modification of the generated report is to include a snapshot of the model that was
tested.
% class definition
classdef CustomReport < sltest.testmanager.TestResultReport
 methods
 function this = CustomReport(resultObjects,reportFilePath)
 this@sltest.testmanager.TestResultReport(resultObjects,reportFilePath);
 end
 end

 methods(Access=protected)
 % Method to customize test case/iteration result section in the report
 function docPart = genTestCaseResultBlock(obj,result)
 % result: A structure containing test case or iteration result
 import mlreportgen.dom.*;

 % Call the superclass method to get the default behavior
 docPart = genTestCaseResultBlock@sltest.testmanager.TestResultReport(...
 obj,result);

 % Get the test case result data for putting in the report
 tcrObj = result.Data;

 % Insert model screenshot at the test case result level
 if isa(tcrObj, 'sltest.testmanager.TestCaseResult')

 % Initialize model name
 modelName = '';

 % Check in the test case result if it has model information. If
 % not, it means there were iterations in the test case or a
 % model was not used.
 testSimMetaData = tcrObj.SimulationMetaData;

 if (~isempty(testSimMetaData))
 modelName = testSimMetaData.modelName;
 end

 % Get iteration results
 iterResults = getIterationResults(tcrObj);

 % Get the model name in case test case had iterations
 if (~isempty(iterResults))
 modelName = iterResults(1).SimulationMetaData.modelName;
 end

 % Insert model snapshot. This will not work for harnesses. With
 % minimal changes we can also open the harness used for
 % testing.
 if (~isempty(modelName))
 try
 open_system(modelName);
 outputFileName = [tempdir, modelName, '.png'];
 if exist(outputFileName,'file')
 delete(outputFileName);
 end
 print(outputFileName, '-s', '-dpng');
 para = sltest.testmanager.ReportUtility.genImageParagraph(...
 outputFileName,...
 '5.2in','3.7in');
 append(docPart,para);
 catch
 end
 end
 end
 end
 end
end

Click here for a code file of this example.

 Customize Test Results Reports

7-23

Generate a Report Using the Custom Class
After you customize the class and methods, use the sltest.testmanager.report to generate the
report. You must use the 'CustomReportClass' name-value pair for the custom class, specified as
a string. For example:

% Generate the result set from imported data
result = sltest.testmanager.importResults('demoResults.mldatx');

% Specify the report file name and path
filePath = 'testreport.zip';

% Generate the report using the custom class
sltest.testmanager.report(result,filePath, ...
 'Author','MathWorks',...
 'Title','Test',...
 'IncludeMLVersion',true,...
 'IncludeTestResults',int32(0),...
 'CustomReportClass','CustomReport',...
 'LaunchReport', true);

Alternatively, you can create your custom report using the Test Manager report dialog box. Select a
test result, click the Report button on the toolstrip, and specify the custom report class in the Create
Test Result Report dialog box. For the Test Manager to use the custom report class, the class must be
on the MATLAB path.

See Also
sltest.testmanager.TestResultReport | sltest.testmanager.report

Related Examples
• “Design Subclass Constructors”

7 Test Manager Results and Reports

7-24

Append Code to a Test Report
This example shows how to use a customization class to print integrated code in a test results report.
If you test models that include handwritten code, you can print the code to a report to be reviewed
with the test results.

The cruise control model integrates handwritten C code using an S-Function builder block. The C
code is a utility function that disregards simultaneous pressing of two buttons: Accel/Res and
Coast/Set.

This example requires Simulink® Report Generator™ and Microsoft® Windows.

Example Files

Before running this example, set the file names.

rptCustom = 'textAppendReport.m';
resultsFile = 'DoublePressSfcnSimTestResults';
filePath = fullfile(tempdir,'textAppendedReport.zip');

Report Customization Class

The report customization class textAppendReport.m appends the S-Function code to the end of the
report body.

open(rptCustom)

Load the Results and Create the Report

1. Load the test results file.

result = sltest.testmanager.importResults(resultsFile);

2. Create the test report using the customization.

sltest.testmanager.report(result,filePath,'CustomReportClass','textAppendReport',...
 'IncludeTestResults',0)

3. The report appends the S-Function wrapper code:

 Append Code to a Test Report

7-25

For more information on report customization, see “Customize Test Results Reports” on page 7-21.

sltest.testmanager.clearResults;
sltest.testmanager.close;

7 Test Manager Results and Reports

7-26

Results Sections
In this section...
“Summary” on page 7-28
“Test Requirements” on page 7-28
“Iteration Settings” on page 7-28
“Errors” on page 7-28
“Logs” on page 7-28
“Description” on page 7-28
“Parameter Overrides” on page 7-28
“Coverage Results” on page 7-28
“Aggregated Coverage Results” on page 7-28
“Scope coverage results to linked requirements” on page 7-29
“Add Tests for Missing Coverage” on page 7-29
“Applied Coverage Filters” on page 7-29

Double-click a test case results in the Results and Artifacts pane to open a results tab and view the
test case result sections. A baseline test case result is shown as an example.

 Results Sections

7-27

Summary
For a selected test case, the Summary section includes the basic test information and the test
outcome. For more information about the simulation, toggle the Simulation Metadata arrow to
expand the section.

For a selected Results item, the Summary section includes information for the Result Set, which
applies to all of its child test suites and test cases.

Test Requirements
A list of test requirements linked to the test case. See “Requirements” on page 6-149“Requirements”
on page 6-149 for more information on linking requirements to test cases.

Iteration Settings
If you are using iterations to run test cases, then this section appears in the results. For more
information about test iterations, see “Test Iterations” on page 6-113.

Errors
This section displays simulation errors captured from the Simulink Diagnostic Viewer. Errors from
incorrect information defined in the test case and callback scripts are also shown here.

Logs
This section displays simulation warnings captured from the Simulink Diagnostic Viewer.

Description
You can include notes about the test results here. These notes are saved with the results.

Parameter Overrides
A list of parameter overrides specified in the test case under Parameter Overrides. If parameter
overrides are not specified, then this section is not shown in the results summary.

Coverage Results
If you collect coverage in your test, then the coverage results for the selected test case results appear
in this section. Coverage results are aggregated at the test file level. For more information about
coverage, see “Collect Coverage in Tests” on page 6-124.

Aggregated Coverage Results
At the Results level, lists the model analyzed for test coverage and includes a link to generate a
coverage report. This section also reports the complexity level and the decision and execution
percentages.

7 Test Manager Results and Reports

7-28

Scope coverage results to linked requirements
Controls whether coverage results include all executed items or only executed items that are
explicitly linked to requirements. If not selected, coverage results include all executed items. If
selected, displays coverage results only for tests explicitly linked to requirements.

Add Tests for Missing Coverage
Generate tests for missing coverage using Simulink Design Verifier. To add an iteration to an existing
test case, select the test case name in Test Case. To create a new test case, select <Create a new test
case> and specify the Test Type and Test File name. See “Increase Test Coverage for a Model” on
page 6-136 and “Increase Coverage by Generating Test Inputs” on page 6-161.

Applied Coverage Filters
At the Results level, lists the filter files applied to the coverage results shown in the Aggregated
Coverage Results section.

 Results Sections

7-29

Generate Test Specification Reports
Test specification reports are reports of the test settings and parameters used for test cases, test
suites, or test files. Common uses for these reports are capturing information for test procedure
design reviews and archiving test information. You can create the report before or after running a
test. In addition to using the Test Manager to create the report, you can create the report
programmatically. See the sltest.testmanager.TestSpecReport reference page for examples.

For a test specification report, all of the items you select must be of the same type, either test files,
test suites, or test cases. If you select a mixture of test files, suites, and cases, the Test Spec Report
button and the context menu Create Report option are dimmed. If you select a test file, the report
includes all of its test suites and test cases. If you select a test suite, the report includes all of its test
cases.

This example uses an existing test file (AutopilotTestFile.mldatx), which was created for the
RollAutopilotMdlRef.slx model and its RollReference_Requirement1_3 test harness.

1 Set your current working folder to a writable folder.
2 To open the Test Manager, enter sltestmgr on the MATLAB command line.
3 Click Open.
4 In the Open File dialog box, open the matlab/examples/simulink/main folder and select

AutopilotTestFile.mldatx.
5 Highlight the Requirement 1.3 Test test case and click Test Spec Report.

7 Test Manager Results and Reports

7-30

6 In the Create a Test Specification Report dialog box, specify the Title as RollAutopilot
Model Test Specification Report and the Author as John Smith.

 Generate Test Specification Reports

7-31

7 Leave all the report sections selected by default in the Include in Report section.
8 Leave PDF as the default output format.
9 Specify the file name for the saved report as mynewReport.pdf in a writable folder. If your

current working folder is not writable, use a full path name to a writable folder.
10 Leave the Test Case Reporter field blank because this report uses the default test case template.
11 Click Create to generate the report and open it automatically. These images from the report

show the title page, images of the model and harness, and test inputs and assessment
information.

7 Test Manager Results and Reports

7-32

See Also
sltest.testmanager.TestSpecReport

More About
• “Customize Test Specification Reports” on page 7-34

 Generate Test Specification Reports

7-33

Customize Test Specification Reports
In this section...
“Remove Content or Change Report Formatting and Section Ordering” on page 7-34
“Add Content to a Test Specification Report” on page 7-37

You can customize test specification reports by creating a new test case or test suite template or
reporter. The test suite templates and reporter are used for both test suites and test files.

To remove content or change the formatting or section ordering of a report, create a new template.
To add new content, create a new reporter and specify new holes to hold that content.

Note To customize a report, you must have a Simulink Report Generator license.

Remove Content or Change Report Formatting and Section Ordering
To change the formatting or section ordering of a Test Specification Report or to remove content, use
the createTemplate method of the TestCaseReporter or TestSuiteReporter. The
createTemplate method applies to one output type at a time (PDF, HTML, or Word).

This example creates a new test case reporter template for PDF output. The process is the same for
creating templates for other output types and for creating test suite reporter templates.

1 Create a copy of the default TestCaseReporter PDF template in the current working folder.
This folder must be writable. In this case, the folder name is myCustomTCTemplate.

sltest.testmanager.TestCaseReporter.createTemplate(...
 'myCustomTCTemplate','pdf');

For pdf and zip (zip is used for HTML) output, createTemplate creates a zipped file. docx
(Word) output it creates a .dotx template file.

2 To access the separate template files, unzip the PDF template file.

unzipTemplate('myCustomTCTemplate.pdftx');

Unzipping the file creates a docpart_templates.html file and a /stylesheets/root.css
file in the new myCustomTCTemplate folder. PDF and HTML reports use HTML template files.

3 Open and edit the docpart_templates.html file using a text editor. This file lists the content
holes in the order in which the content appears in the report. In this file, you can reorder the
report sections and delete template holes. A portion of the docpart_templates.html file is
shown.

7 Test Manager Results and Reports

7-34

4 In the stylesheets folder, open and edit the root.css file using a text editor. In this file, you
can change the table borders, font size, text color, and other styles. For example, to set a font
size to 14 pixels, use font-size: 14px;

 Customize Test Specification Reports

7-35

To learn more about modifying report styles, see “Modify Styles in PDF Templates” (MATLAB
Report Generator). For information on Word or HTML styles, see “Modify Styles in a Microsoft
Word Template” (MATLAB Report Generator) or “Modify Styles in HTML Templates” (MATLAB
Report Generator), respectively.

5 Zip the files into to the myCustomTCTemplate.pdftx file.

zipTemplate('myCustomTCTemplate.pdftx');
6 Use the custom template for your test specification PDF report by using either of these

processes.

• Use sltestmgr to open the Test Manager and click Test Spec Report to open the Create a
Test Specification Report dialog box. Add myCustomTCTemplate.pdftx to the Test Case
Reporter field.

• Specify the myCustomTCTemplate.pdftx file name in the TestCaseReporterTemplate
property of the sltest.testmanager.TestSpecReport.

sltest.testmanager.TestSpecReport(test_cases,'testReport.pdf',...
 'Author','John Smith','Title','Autopilot Test Spec Report',...
 'LaunchReport',true,...
 'TestCaseReporterTemplate','MyCustomTCTemplate.pdftx')

7 Test Manager Results and Reports

7-36

Add Content to a Test Specification Report
To add new content to a report or override how content is added, create a subclass of the
sltest.testmanager.TestCaseReporter or sltest.testmanager.TestSuiteReporter
class. Then add properties and methods for the new content in its class definition file. Add holes to
hold that content in the test suite or test case templates.

This example describes creating a new test case reporter. Use the same process to create a new test
suite reporter.

1 To create a new test case reporter class, use the customizeReporter method of the
TestCaseCreate reporter class. This command creates a new class folder in the current
working folder. This new reporter inherits from the TestCaseReporter class.

customTCRptr = ...
 sltest.testmanager.TestCaseReporter.customizeReporter...
 ('@myTCReporter');

See “Subclass a Reporter Definition” (MATLAB Report Generator).

The @myTCReporter folder has a myTCReporter.m class definition file and a resources folder.
The resources folder contains a templates folder, which contains folders and files for the
report output types:

• pdf folder

• default.pdftx — Zipped PDF template file. Unzip this file using unzipTemplate and
then open the template file using a text editor. After editing, use zipTemplate.

• docx folder

• default.dotx — Word template file. Open this template file by right-clicking and
selecting Open from the context menu. If you click the file name to open it, the Word file
associated with the template opens instead of the template file. See “Open a Template
File” (MATLAB Report Generator).

• html folder

• default.htmt — Single-file HTML template. Open this file using a text editor.
• default.htmtx — Zipped HTML template file. Unzip this file using unzipTemplate and

then open the template file using a text editor. After editing, use zipTemplate.

For information on templates, see “Templates” (MATLAB Report Generator).
2 In the @myTCReporter folder, open the class definition file myTCReporter.m in a text editor.

 Customize Test Specification Reports

7-37

3 To add new content, add a property and define a get<property> method in the customized
class definition file. Then add the hole to the output type templates.

For example, for a new section named References, add a References property and define a
getReferences method in the myTCReporter.m class definition file.

7 Test Manager Results and Reports

7-38

Then, add <hole id="References">REFERENCES</hole> to the template files in the desired
location to include the hole content in the generated report for each output type. See “Add Holes
in HTML and PDF Templates” (MATLAB Report Generator) and “Add Holes in a Microsoft Word
Template” (MATLAB Report Generator).

4 To override an existing method, add a function in the customized class definition file that defines
the get method for the hole.

For example, for the TestDetails hole in the TestCaseReporter, create a method called
getTestDetails in the customized TestCaseReporter class definition file. You do not need to
add a property or hole because they are already specified in the TestCaseReporter class from
which the customized reporter inherits.

5 To generate a report using the custom reporter, use Simulink Report Generator commands (see
“Define a New Reporter” (MATLAB Report Generator)).

These sample commands create a PDF report for a test case. It uses the myTCReporter reporter,
which takes a test case array (test_cases) as the input object. Then, add the test case reporter
object to the report and use rptview to display it. The report is saved in the
myCustomTestSpecRpt.pdf file.

myrpt = slreportgen.report.Report('myCustomTestSpecRpt.pdf');
testcaseRptr = myTCReporter('Object',test_cases);

 Customize Test Specification Reports

7-39

add(myrpt,testcaseRptr);
close(myrpt);
rptview(myrpt);

See Also

More About
• “Customize Test Results Reports” on page 7-21
• “Templates” (MATLAB Report Generator)
• “Open a Template File” (MATLAB Report Generator)
• “Subclass a Reporter Definition” (MATLAB Report Generator)
• “Define a New Reporter” (MATLAB Report Generator)

7 Test Manager Results and Reports

7-40

Debugging Equivalence Test Failures Using Model Slicer
This example shows how to debug Simulink Test equivalence failures by highlighting funtional
dependencies using Model Slicer. For more information, see “Highlight Functional Dependencies”
(Simulink Check). The example files include a predefined equivalence test to use with the
sldemo_fuelsys_dd_controller model. The sample test case compares the model simulation in
normal and software-in-the-loop (SIL) mode. The model includes a numerical discrepancy. In this
example, you use Model Slicer to trace the faults and identify the discrepancy. For more information
about debugging test failures, see the Capabilities and Limitations section of “Debugging Test
Failures Using Model Slicer” on page 7-7.

Setting Up the Artifacts

Run the test case and view the results.

1. Open the sldemo_fuelsys_dd_controller model:

open_system('sldemo_fuelsys_dd_controller');

2. Log the output by the signals coming out of airflow_calc and fuel_calc subsystems and the
Stateflow chart control_logic to generate a visualization after the analysis. To log signals, click
the signal and , in the action bar, click Log Selected Signal.

3. In the Apps tab, in the Model Verification, Validation, and Test section, click Simulink Test to
open the Simulink Test toolstrip.

4. In the Tests tab, click Simulink Test Manager to to open the Test Manager.

 Debugging Equivalence Test Failures Using Model Slicer

7-41

5. To open the test file, click Open and select slTestEquivalenceFailureEx from the example
folder.

6. After the test file loads, select New Test Case 1 in the Test Browser pane.

7. Click Run.

8. The new test results appear in the Results and Artifacts pane. Right-click the result and select
Expand All Under to see the Equivalence Criteria Result and Verify Statements 1 section.

7 Test Manager Results and Reports

7-42

Observe that only one signal failed: airflow_calc. Consider changing the Device details from 32
bits to 64 bits from Hardware and Implementation pane after clicking on Model Settings from
Simulation tab, if you are not able to see the failure.

Entering Debug Session

Set up the Model Slicer to debug the failed airflow_calc signal.

1. To compare the airflow_calc signal in different simulation modes, select the radio button next
to the airflow_calc signal. Another way to select a failed signal is from the Signal to Debug
dropdown list in the toolbar.

In the plot area, compare the outputs across simulations.

 Debugging Equivalence Test Failures Using Model Slicer

7-43

2. In the Tools section, click Debug. Note that you must plot a failed equivalence or verify signal to
enable the Debug button.

The Debug tab opens and hides. The debug tab hides multiple Test Manager options.

3. To set up the Model Slicer, click Debug Using Slicer.

Model Slicer prepares the debugging session by:

1 Rerunning the test case and creating new debugging results. This action ensures that the failure
still exists in the current state of the test model.

2 Launching the Model Slicer on the test model.
3 Automatically plotting the selected failed signal in the debugging results and setting the failed

signal as the starting time point.
4 Pausing the simulation at the model start time to continue debugging.

7 Test Manager Results and Reports

7-44

Debugging Using Model Slicer

Identify the reason for the failure by using the debugging features of the Model Slicer.

1. Use the Step Back or Step Forward buttons to move one step back or forward in simulation time.
The left data cursor moves to the current simulation time. Observe the changes in the data
dependencies by noting the changed model highlighting and port value labels for the active signals at
every time stamp.

You can also use Run, Continue, or Stop buttons to run, complete, or stop the current simulation,
respectively.

2. In the Test Manager, click Continue to Failure to continue the model simulation to the beginning
of the next failure region. The data cursors show the bounds of the failure region.

3. Observe these changes at the failure:

• Simulation pauses at T = 4.81.
• The data cursors update accordingly.

 Debugging Equivalence Test Failures Using Model Slicer

7-45

From the Model Slicer highlighting, you can observe the branch of the model that causes the error.

Notice that the constant, 0 passes through the sldemo_fuelsys_dd_controller/
airflow_calc/hold integrator Switch block. To determine why the control port evaluates to
false, highlight the control dependencies in the model.

4. Enable Display Control Dependencies from the Simulation Time Window section in the Model
Slicer Dialog pane. Observe the chain of blocks that the Model Slicer highlights as the probable cause
of the discrepancy. To further visualize the numerical differences between the simulation modes, end
the debugging session, log the signals in the active chain, and debug the model again.

7 Test Manager Results and Reports

7-46

Refining the Debugging Results

1. Exit the debugging session by clicking Session > Close Debug.

2. Open the model and log all signals in the observed path before.

3. Save the model.

4. Repeat steps 1 to 3 from the Debug Using Model Slicer section.

Observe that the Enumerated Constant value is being set in the MATLAB function block based on the
simulation mode.

Incorporating the Fix

1. Exit the debugging session by clicking SESSION > Close Debug.

2. Open the model and update sldemo_fuelsys_dd_controller/airflow_calc/MATLAB
function to return the same value irrespective of the simulation mode.

3. Save the model.

4. Run the test case and view the results.

Observe that the test results test results pass.

See Also

• “Refine, Test, and Debug a Subsystem” on page 2-22

 Debugging Equivalence Test Failures Using Model Slicer

7-47

Real-Time Testing

• “Test Models in Real Time” on page 8-2
• “Reuse Desktop Test Cases for Real-Time Testing” on page 8-9

8

Test Models in Real Time
In this section...
“Overall Workflow” on page 8-2
“Real-Time Testing Considerations” on page 8-2
“Complete Basic Model Testing” on page 8-3
“Set up the Target Computer” on page 8-3
“Configure the Model or Test Harness” on page 8-3
“Add Test Cases for Real-Time Testing” on page 8-4
“Assess Real-Time Execution Using verify Statements” on page 8-7

You can test your system in environments that resemble your application. You begin with model
simulation on a development computer, then use software-in-the-loop (SIL) and processor-in-the-loop
(PIL) simulations. Real-time testing executes an application on a standalone target computer that can
connect to a physical system. Real-time testing can include effects of timing, signal interfaces, system
response, and production hardware.

Real-time testing includes:

• Rapid prototyping, which tests a system on a standalone target connected to plant hardware. You
verify the real-time tests against requirements and model results. Using rapid prototyping results,
you can change your model and update your requirements, after which you retest on the
standalone target.

• Hardware-in-the-loop (HIL) using Simulink Real-Time™, which tests a system that has passed
several stages of verification, typically SIL and PIL simulations.

Overall Workflow
This example workflow describes the major steps of creating and executing a real-time test:

1 Create test cases that verify the model against requirements. Run the model simulation tests and
save the baseline data.

2 Set up the real-time target computer.
3 Create test harnesses for real-time testing, or reuse model simulation test harnesses. In Test

Sequence or Test Assessment blocks, verify statements assess the real-time execution.
4 In the Test Manager, create real-time test cases.
5 For the real-time test cases, configure target settings, inputs, callbacks, and iterations. Add

baseline or equivalence criteria.
6 Execute the real-time tests.
7 Analyze the results in the Test Manager. Report the results.

Real-Time Testing Considerations
• Baseline or equivalence comparisons can fail because of missing data or time-shifted data from

the real-time target computer. When investigating real-time test failures, look for time shifts or
missing data points.

8 Real-Time Testing

8-2

• You cannot override the real-time execution sample time for applications built from models
containing a Test Sequence block. The code generated for the Test Sequence block contains a
hard-coded sample time. Overriding the target computer sample time can produce unexpected
results.

• You cannot log output ports or states.
• Your target computer must have a file system to use verify statements and test case logging.
• Your target computer must be running Simulink Real-Time.

Complete Basic Model Testing
Real-time testing often takes longer than comparative model testing, especially if you execute a suite
of real-time tests that cover several scenarios. Before executing real-time tests, complete
requirements-based testing using desktop simulation. Using the desktop simulation results:

• Debug your model or make design changes that meet requirements.
• Debug your test sequence. Use the debugging features in the Test Sequence Editor. See “Debug a

Test Sequence” on page 3-74.
• Update your requirements and add corresponding test cases.

Set up the Target Computer
Real-time testing requires a standalone target computer. Simulink Test only supports target
computers running Simulink Real-Time. For more information, see:

• “Target Computer Settings” (Simulink Real-Time)
• “Troubleshooting in Simulink Real-Time” (Simulink Real-Time)

Configure the Model or Test Harness
Real-time applications require specific configuration parameters and signal properties.

Code Generation

A real-time test case requires a real-time system target file. In the model or harness configuration
parameters, on the Apps tab, under Code Generation, click Simulink Coder. In the C Code tab,
verify that the system target file is slrealtime.tlc. If the button in the Output section is Custom
Target, click that button and verify that the Custom target is slrealtime.tlc. If it isn't, select
Select system target file and select slrealtime.tlc to generate system target code.

If your model requires a different system target file, you can set the parameter using a test case or
test suite callback. After the real-time test executes, set the parameter to its original setting with a
cleanup callback. For example, this callback opens the sltestProjectorController model and
sets the system target file parameter to slrealtime.tlc .

openExample('sltestProjectorController');
set_param('sltestProjectorController',...
 'SystemTargetFile','slrealtime.tlc');

Data Import/Export Format

Models must use a data format other than dataset. To set the data format:

 Test Models in Real Time

8-3

1 Open the configuration parameters.
2 Select the Data Import/Export pane.
3 Select the Format.

Log Signals from Real-Time Execution

To configure your signals of interest for real-time testing:

• Enable signal logging in the Configuration Parameters, in the Data Import/Export pane.
• Name each signal of interest using the signal properties. Unnamed signals can be assigned a

default name which does not match the name of the baseline or equivalence signal. In this
example test harness, the logged signals have explicit names.

Add Test Cases for Real-Time Testing
Use the Test Manager to create real-time test cases.

1 In the Simulink toolstrip, on the Apps tab under Model Verification, Validation, and Test, select
Simulink Test.

2 Click Simulink Test Manager.
3 In the Test Manager, select New > Real-Time Test.

Test Type

You can select a baseline, equivalence, or simulation real-time test. For simulation test types, verify
statements serve as pass/fail criteria in the test results. For equivalence and baseline test types, the
equivalence or baseline criteria also serve as pass/fail criteria.

• Baseline — Compares the signal data returned from the target computer to the baseline in the
test case. To compare a real-time execution result to a model simulation result, add the model
baseline result to the real-time test case and apply optional tolerances to the signals.

8 Real-Time Testing

8-4

• Equivalence — Compares signal data from a simulation and a real-time test, or two real-time
tests. To run a real-time test on the target computer, then compare results to a model simulation:

• Select Simulation 1 on target.
• Clear Simulation 2 on target.

The test case displays two simulation sections, Simulation 1 and Simulation 2.

Comparing two real-time tests is similar, except that you select both simulations on target. In the
Equivalence Criteria section, you can capture logged signals from the simulation and apply
tolerances for pass/fail analysis.

• Simulation: Assesses the test result using only verify statements and real-time execution. If no
verify statements fail, and the real-time test executes, the test case passes.

Load Application From

Using this option, specify how you want to load the real-time application. The real-time application is
built from your model or test harness. You can load the application from:

• Model — Choose Model if you are running the real-time test for the first time, or your model
changed since the last real-time execution. Model typically takes the longest because it includes
model build and download. Model loads the application from the model, builds the real-time
application, downloads it to the target computer, and executes it on the target computer.

• Target Application — Choose Target Application to send the target application from the
host to a target computer, and execute the application. Target Application can be useful if
you want to load an already-built application on multiple targets.

• Target Computer — This option executes an application that is already loaded on the real-time
target computer. You can update the parameters in the test case and execute using Target
Computer.

This table summarizes which steps and callbacks execute for each option.

Test Case Execution
Step (first to last)

Load Application From
Model Target Application Target Computer

Executes pre-load
callback

Yes Yes Yes

Loads Simulink model Yes No No
Executes post-load
callback

Yes No No

Sets Signal Editor
scenario

Yes No No

Builds real-time
application from model

Yes No No

Downloads real-time
application to target
computer

Yes Yes No

Sets runtime
parameters

Yes Yes Yes

 Test Models in Real Time

8-5

Test Case Execution
Step (first to last)

Load Application From
Model Target Application Target Computer

Runs Test Sequence
scenarios

Yes No No

Executes pre-start real-
time callback

Yes Yes Yes

Executes real-time
application

Yes Yes Yes

Executes cleanup
callback

Yes Yes Yes

Model

Select the model from which to generate the real-time application.

Test Harness

If you use a test harness to generate the real-time application, select the test harness.

Simulation Settings Overrides

For real-time tests, you can override the simulation stop time, which can be useful in debugging a
real-time test failure. Consider a 60-second test that returns a verify statement failure at 15
seconds due to a bug in the model. After debugging your model, you execute the real-time test to
verify the fix. You can override the stop time to terminate the execution at 20 seconds, which reduces
the time it takes to verify the fix.

Callbacks

Real-time tests offer a Pre-start real-time application callback which executes commands just
before the application executes on the target computer. Real-time test callbacks execute in a
sequence along with the model load, build, download, and execute steps. Callbacks and step
execution depends on how the test case loads the application.

Sequence
Load application from:

Model

Load application from:

Target application

Load application from:

Target computer
Executes first Preload callback Preload callback Preload callback

 Post-load callback — —
 Pre-start real-time

callback
Pre-start real-time
callback

Pre-start real-time
callback

Executes last Cleanup callback Cleanup callback Cleanup callback

Iterations

You can execute iterations in real-time tests. Iterations are convenient for executing real-time tests
that sweep through parameter values or Signal Editor scenarios. Results appear grouped by iteration.
For more information on setting up iterations, see “Test Iterations” on page 6-113. You can create:

8 Real-Time Testing

8-6

• Tabled iterations from a parameter set — Define several parameter sets in the Parameter
Overrides section of the test case. Under Iterations > Table Iterations, click Auto Generate
and select Parameter Set.

• Tabled iterations from Signal Editor scenarios — If your model or test harness uses a Signal Editor
input, below the IterationsTable Iterations table, click Auto Generate and select Signal
Editor Scenario. If you use a Signal Editor scenario, load the application from the model.

• Tabled iterations from Test Sequence scenarios — If your test harness uses Test Sequence block
scenarios, you can create an iteration for each scenario in the Test Manager. Below the Iterations
table, click Auto Generate and select Test Sequence Scenario. If you use Test Sequence
scenarios, load the application from the model.

• Scripted iterations — Use scripts to iterate using model variables or parameters. For example,
assume you are testing an oscillator system and use a Test Sequence block to create a square
wave test signal using the parameter frequency.

In the test file, you can use real-time test scripted iterations to cover a frequency sweep from 5 Hz
to 35 Hz. The script iterates the value of frequency in the Test Sequence block.

%% Iterate over frequencies to determine best oscillator settings

% Create parameter sets
freq = 5.0:1.0:35.0;

for i_iter = 1:length(freq)
 % Create iteration object
 testItr = sltestiteration();

 % Set parameters
 setVariable(testItr,'Name','frequency','Source',...
 'Test Sequence','Value',freq(i_iter));

 % Register iteration
 addIteration(sltest_testCase, testItr);
end

Assess Real-Time Execution Using verify Statements
In addition to baseline and equivalence signal comparisons, you can assess real-time test execution
using verify statements. A verify statement assesses a logical expression and returns results to
the Test Manager. Use verify inside a Test Sequence or Test Assessment block or, if you have a

 Test Models in Real Time

8-7

Stateflow license, in a Stateflow chart. See “Assess Model Simulation Using verify Statements” on
page 3-18.

See Also

Related Examples
• “Real-Time Application Creation and Execution” (Simulink Real-Time)

8 Real-Time Testing

8-8

Reuse Desktop Test Cases for Real-Time Testing

Convert Desktop Test Cases to Real-Time
In the Test Manager, you can reuse test cases for real-time testing by converting desktop test cases to
real-time test cases. For convenience, data can be stored externally so that each test case accesses
common inputs and baseline data. The overall workflow is as follows:

1 Create a baseline, equivalence, or simulation test case with external inputs. For baseline tests,
add baseline data from external files.

2 In the Test Manager, select the test case in the Test Browser.
3 Copy the test case. Right-click the test case and select Copy.
4 Paste the new test case into a test suite.
5 Rename the new test case.
6 Right-click the new test case, and select Convert to > Real-Time Test. For equivalence tests,

select which simulation (simulation 1 or simulation 2) to run in real time.
7 Select the Target Computer and Load Application From options.
8 Ensure that the model settings are compatible with real-time test execution. For more

information, see “Development Computer Requirements” (Simulink Real-Time).

Use External Data for Real-Time Tests
You can simplify test input data management by defining the input data in an external MAT or Excel
file. Map the data to root inports in your model or test harness for desktop simulation. When you
convert the desktop simulation test case into a real-time test, the test case uses the same inport
mapping.

Using external data depends on how your test case loads the real-time application:

Load Real-Time Application from Model

If you are using external data for a real-time test, loading the real-time application from the model
gives you the option of using an Excel file, MAT file, or CSV file. The external data is built into the
application, and you can rerun the application from the target application or target computer.

In the System Under Test section, set the application to load from Model. In the Inputs section of
the test case, click Add, and select an Excel file, MAT file, or CSV file. Map the data to your model
inports. For more information on input mapping, see “Use External Excel or MAT-File Data in Test
Cases” on page 6-64.

Load Real-Time Application from Target Application or Target Computer

After running the test from the model, you can run the test from the target application or target
computer without recompiling. The application uses the input mapping from when the test ran from
the model.

You can map external data to a test case loaded from the target application or target computer,
without first running from the model. The external data must be in a MAT file, in the same format
used if the test is loaded from the model. In the System Under Test section, select to load the
application from the Target Application or Target Computer. In the Inputs section, click Add
and select a MAT file. The Input string is not editable.

 Reuse Desktop Test Cases for Real-Time Testing

8-9

Reuse Desktop Test Case for Real-Time Testing
This example shows a basic desktop test case reuse workflow using external input data defined in an
Excel file. You run the baseline test case on the desktop, update the baseline data, convert a copy of
the test case to a real-time test, then run the test case on a target computer. The test file, baseline
data, and Excel input data file are provided. This example runs only on Windows systems.

Open the Test Manager and Test File

The test file runs a transmission shift controller algorithm through four iterations, each
corresponding to a different test scenario: passing, gradual acceleration, hard braking, and coasting.
Baseline data associated with each scenario for the signals vehicle speed and output torque.

tf = sltest.testmanager.TestFile('sltestTestCaseRealTimeReuseExample.mldatx');
sltest.testmanager.load(tf.Name);
sltest.testmanager.view;

Run the Baseline Test and View Results

Click Run in the toolbar.

When the test finishes running, select output torque under Baseline Criteria Result to view the
comparison. The Passing result fails due to transient signals that fall outside the relative tolerance.

8 Real-Time Testing

8-10

Update the Baseline

Assume that the transient signals are not significant, and update the baseline data:

1 Click Next Failure. The first failure region is bounded by data cursors.
2 Click Update Baseline > Replace Signal Segment in Baseline File from the toolstrip, and

confirm that you want to overwrite the data.
3 Repeat this process for the other two failure regions.

Convert Baseline Test to Real-Time Test

1 In the Test Browser, right-click Baseline Test and select Copy.
2 Paste the new test case under the test suite.
3 Rename the new test case RT Baseline Test.
4 Right-click RT Baseline Test and select Convert to > Real-Time Test.

Run the Real-Time Test Case

1 Set the Target Computer.

 Reuse Desktop Test Cases for Real-Time Testing

8-11

2 Set the system under test to load from Model.

3 Run the RT Baseline Test test case.

Examine and Resolve Test Failures

In this example, several of the scenarios fail due to timing impacts on the data output. For example,
in the HardBrake iteration, the vehicle speed output falls outside the relative tolerance after the
brake is applied. To resolve this failure, you could:

• Increase the relative tolerance for the real-time test.
• Create a separate set of baseline data for the real-time test.

See Also

Related Examples
• “Real-Time Application Creation and Execution” (Simulink Real-Time)

8 Real-Time Testing

8-12

Testing Custom C/C++ Code

• “Importing and Testing Custom C/C++ Code” on page 9-2
• “Import Custom Code for Unit Testing Using API Commands” on page 9-5
• “Conduct Unit Testing on Imported Custom Code by Using the Wizardfilename” on page 9-11

9

Importing and Testing Custom C/C++ Code
You can test custom C or C++ code by importing it into Simulink using the Code Importer wizard in
the Test Manager or API commands at the MATLAB command line. You can perform unit testing to
test a subset of your C code or integration testing to test your complete C or C++ code. When you
import your code, the code importer:

• Converts the C code functions to Simulink C Caller blocks and saves those blocks in a Simulink
library

• Creates an internal harness for each Simulink C Caller block
• Generates a test file

For unit tests, the code importer additionally creates a sandbox to isolate the imported functions.

Import Code Using the Wizard or the API
To import and test custom C or C++ code using the Code Importer wizard, open the Test Manager
and select New > Test for C/C++ Code. The wizard steps are shown in the “Conduct Unit Testing on
Imported Custom Code by Using the Wizardfilename” on page 9-11 example. After you import the
code using the wizard, the Test Browser pane of the Test Manager shows the generated test file, test
suites, and test cases, and automatically fills the library model and test harness fields and coverage
settings for each test case. You can customize the test cases in the Test Manager by adding inputs,
assessments, links to requirements, or other options.

The “Import Custom Code for Unit Testing Using API Commands” on page 9-5 example shows the
classes and methods for importing code. The code importer sets the property values for the
generated library, test file, test suites, test cases, and coverage. You can customize the test cases by
using API commands to add inputs, assessments, links to requirements, or other options.

Before you run the test cases, either change the current folder to the folder that contains the
generated artifacts or add the generated data dictionary to the path. Then run the test cases and
view the coverage and other test results.

Code Importer Generated Artifacts
The code importer creates these artifacts:

• A Simulink library with C Caller blocks for each imported custom code function.
• An internal test harness for each C Caller block. For each generated harness, the solver is

FixedStepDiscrete, and coverage is enabled.
• An MLDATX test file. The test file includes a test suite and test case for each C Caller block. The

code importer also sets these coverage types:

• Decision coverage
• Condition coverage
• MCDC coverage
• Lookup table coverage
• Signal range coverage
• Coverage for Simulink Design Verifier blocks

9 Testing Custom C/C++ Code

9-2

• Relational boundary coverage
• Signal range coverage

• Simulink data dictionary

Additionally, for unit tests only, the code importer creates:

• A sandbox to isolate the functions being tested
• Stubs, if any source files have undefined symbols

Limitations and Workarounds
These limitations and workarounds apply to using the custom C or C++ Code Importer.

General Limitations and Workarounds

• For integration tests, if your code includes C++ functions, add wrappers around them to make
them C-compatible before importing the functions into Simulink.

• These C types, and functions with formal arguments that use these types, cannot be imported.
Global variables that use these types are not exposed as ports on the C Caller block:

• Structures with unions or pointer members
• Functions with inputs that have more than one level of pointer indirection (for example, >=**)
• Functions that return a pointer
• Types with names longer than 63 characters, and functions and variables that use those types

• If your code has many global variables, use a Stateflow chart instead of an Initialize Function
block to set the variables to their initial values in your Simulink model, .

• If a header file or C or C++ file contains assembly code that is defined in the function body, the
code importer does not import that function. This limitation applies only if the assembly code is
not compatible with the host computer. To import the function,

• For integration tests, replace the assembly code by using an #ifdef directive.
• For unit tests, the function is moved automatically to the auto_stub.c file with an empty

body. To import the function into Simulink, manually stub the function in man_stub.c.
• For target-specific code, if the code accesses absolute memory addresses, comment out that code

to prevent the simulation from failing.

Header Files

• If the same header file is included multiple times and each inclusion is preceded by a different
preprocessor directive (such as, #define X 1, #define X 2), the code might not import
correctly.

• If assembly code is defined in the header file, define a compatible macro by using an #ifdef
directive. For example, if your code is:

#define XYZ(K,L) {\
asm("MOVLW " ___mkstr(K)); \
asm("MOVLW " ___mkstr(L)); \
}

replace it with:

 Importing and Testing Custom C/C++ Code

9-3

#ifndef IS_SL_IMPORT
#define XYZ(K,L) {\
asm("MOVLW " ___mkstr(K)); \
asm("MOVLW " ___mkstr(L)); \
}
#else
// a valid implementation
#endif

Then, add IS_SL_IMPORT to the list of defines when you import code.

Unit Tests

These limitations and workarounds apply only to unit tests.

• Only C code is supported for importing.
• If a source or header file contains a function definition that is included multiple times in the

source file being imported, update the code so the function definition appears only once.
• All included files, using #include, should be self-contained, that is, they compile on their own.
Specifically, a header should have header guard and include all other headers that it needs.

See Also
sltest.CodeImporter | sltest.CodeImporter.SandboxSettings | createSandbox

Related Examples
• “Conduct Unit Testing on Imported Custom Code by Using the Wizardfilename” on page 9-11
• “Import Custom Code for Unit Testing Using API Commands” on page 9-5

9 Testing Custom C/C++ Code

9-4

Import Custom Code for Unit Testing Using API Commands
This example shows how to use the API to import custom C code for a heat pump controller into
Simulink for unit testing. Unit tests test one or more functions in isolation from the custom code
library. For unit tests, the Simulink Test code importer generates a test sandbox and a library
containing a C Caller block from the specified custom code.

Heat Pump Controller Custom Code Files

The complete code for the heat pump controller is in these C code source and header files:

The source files are in the src directory:

• tempController.c
• utils.c

The header files are in the include directory:

• tempController.h
• utils.h
• controllerTypes.h

The tempController.c file contains the algorithm for the custom C code for a heat pump unit. The
heatpumpController function in that file uses the room temperature (Troom_in) and the set
temperature (Tset) as inputs. The output is pump_control_bus type structure with signals that
control the fan, heat pump, and the direction of the heat pump (heat or cool). The
pump_control_bus structure has these fields: fan_cmd, pump_cmd, and pump_dir. The
pump_control_bus structure type is defined in the controllerTypes.h file. The output of the
heatpumpController function is:

Temperature System Fan Pump Pump
Condition State Command Command Direction

|Troom_in ‐ Tset| < DeltaT_fan Idle 0 0 IDLE
DelatT_fan <= |Troom_in ‐ Tset| < DeltaT_pump Fan only 1 0 IDLE

|Troom_in ‐ Tset| >= DeltaT_pump and Tset < Troom_in Cooling 1 1 COOLING
|Troom_in ‐ Tset| >= DeltaT_pump and Tset > Troom_in Heating 1 1 HEATING

The heatpumpController function uses two utility functions, absoluteTempDifference and
pumpDirection, which are defined in the utils.c file. The absoluteTempDifference function
returns the absolute difference between Tset and Troom_in as a double. The pumpDirection
function returns one of these PumpDirection type enum values:

Temperature Condition Pump Direction
Tset < Troom_in COOLING
Tset > Troom_in HEATING

The PumpDirection enum type is defined in the controllerTypes.h file.

Import Heat Pump Controller Code and Automatically Create Stubs

This example uses only tempController.c to create and import a test sandbox into Simulink. You
use the sandbox for performing unit testing only on the heatpumpController function and not on

 Import Custom Code for Unit Testing Using API Commands

9-5

the complete code. Generating the sandbox automatically creates stubs for the utility functions used
by the heatpumpController function, absoluteTempDifference and pumpDirection. Since the
utility functions are not defined in the tempController.c file and the utilities.c file is not
included, the code importer creates stubs so the code does not error.

Set Up the CodeImporter Object

Create an instance of a CodeImporter object for the heat pump controller custom code. Setting the
OutputFolder property to pwd evaluates the string in between the $ symbols as a MATLAB
expression. Set OutputFolder to pwd to specify the current folder as the output folder. Set the
SourceFiles property to the tempController.c file in the src directory. Use the $ symbols to
specify the file location for the CustomCode property, too.

obj = sltest.CodeImporter('heatpumpController');

obj.OutputFolder = "pwd";

obj.CustomCode.SourceFiles = "$fullfile('src','tempController.c')$";
obj.CustomCode.IncludePaths = fullfile('include');
obj.CustomCode.GlobalVariableInterface = true;

Create the Test Sandbox

Configure the CodeImporter object with the desired test type and sandbox settings.

To create a test sandbox for the specified heatpumpController function in the custom code, set the
TestType property UnitTest. For this example, use the GenerateAggregatedHeader sandbox
mode. For information about the different sandbox modes, see
sltest.CodeImporter.SandboxSettings.

Setting SandboxSettings.CopySourceFiles to true copies the specified source file into the test
sandbox.

Note that you can use GenerateAggregatedHeader sandbox mode only with a single source file.

obj.TestType = "UnitTest";

obj.SandboxSettings.Mode = "GenerateAggregatedHeader";
obj.SandboxSettings.CopySourceFiles = true;

Create the sandbox. This test sandbox is isolated from the original custom code library. Setting
Overwrite to on overwrites the existing test sandbox, if one exists. By default, Overwrite is off.

obj.createSandbox('Overwrite','on');

The createSandbox method creates the heatpumpController_sandbox directory in the specified
output folder, which in this example is the current working folder.

The sandbox directory contains the following subdirectories:

• src: This directory contains the copied source file, tempController.c.
• include: This directory contains the required include files to compile tempController.c in the

sandbox src directory. This directory also contains the aggregatedHeader.h file, which
contains all the required symbols to compile tempController.c.

9 Testing Custom C/C++ Code

9-6

• autostub: This directory contains the auto_stub.c and auto_stub.h files, which hold the
automatically generated stubs for absoluteTempDifference and pumpDirection utility
functions.

• manualstub: This directory contains the man_stub.c and man_stub.h files, which define any
manually specified stubs. By default, these files do not define any functions.

Import the Test Sandbox

Import the sandbox code into Simulink.

obj.import('Functions','heatpumpController');

The import function creates the sandbox. It also creates a library that contains a C Caller block
called heatpumpController, which contains an internal test harness that you can use to perform
unit testing on the heatpumpController. The library is attached to a Simulink Data Dictionary that
defines pump_control_bus and PumpDirection as a Simulink.Bus object and a Simulink
enumeration signal, respectively.

The C Caller block is attached with an internal test harness for unit testing the
heatpumpController function.

Input and Output Ports on the C Caller Block

Because you set CustomCode.GlobalVariableInterface to true before importing, the import
function creates stubs for the absoluteTempDifference and pumpDirection global variables in
auto_stub.c and creates ports for them. For information, see “Enable global variables as function
interfaces”.

This is the C Caller block, heatpumpController, generated from the heatpumpController
function:

These are the automatically generated global variables in the auto_stub.c file for
absoluteTempDifference and pumpDirection:

/***/
/* Generated Global Variables for Stubbed Functions Interface */
/***/
double SLStubIn_absoluteTempDifference_p1;
double SLStubIn_absoluteTempDifference_p2;

 Import Custom Code for Unit Testing Using API Commands

9-7

double SLStubOut_absoluteTempDifference;
double SLStubIn_pumpDirection_p1;
double SLStubIn_pumpDirection_p2;
PumpDirection SLStubOut_pumpDirection;

double absoluteTempDifference(double absoluteTempDifference_p1, double absoluteTempDifference_p2)
{
 SLStubIn_absoluteTempDifference_p1 = absoluteTempDifference_p1;
 SLStubIn_absoluteTempDifference_p2 = absoluteTempDifference_p2;
 return SLStubOut_absoluteTempDifference;
}

PumpDirection pumpDirection(double pumpDirection_p1, double pumpDirection_p2)
{
 SLStubIn_pumpDirection_p1 = pumpDirection_p1;
 SLStubIn_pumpDirection_p2 = pumpDirection_p2;
 return SLStubOut_pumpDirection;
}

In the automatically generated stubs for the absoluteTempDifference function, the global
variables SLStubIn_absoluteTempDifference_p1 and
SLStubIn_absoluteTempDifference_p2 save the input arguments of the function. The function
returns the value stored in SLStubOut_absoluteTempDifference. Similarly, pumpDirection
saves the input arguments and returns SLStubOut_pumpDirection.

To use the test harness created using automatically created stubs, refer to the next figure. Add buses
for the inputs and outputs. To enable connecting a Simulink signal for simulation, connect inputs for
Tset, Troom_in and the expected outputs from the global variables,
SLStubOut_absoluteTempDifference and SLStubOut_pumpDirection Likewise, connect
outputs as shown in the figure. You can use the inputs and outputs to observe the internal values
passed by heatpumpController to the absoluteTempDifference and pumpDirecton
subfunction calls.

Change Automatically Created Stubs to Manual Stubs

In cases where, for example, you want to generate the intended output of the stubs as input to the
automatically generated ports, you can substitute manual stubs for the stubs automatically generated

9 Testing Custom C/C++ Code

9-8

when the sandbox was created. After you switch to using manual stubs, you update the existing
sandbox and import it again.

Manually Modify an Automatically Generated Stub Function

You can manually provide definitions for the automatically generated stub functions by updating the
man_stub.c and man_stub.h files in the manualstub directory.

manualstubpath = fullfile([obj.LibraryFileName.char '_sandbox'],'manualstub');
helperFunctionToUpdateManualStubs(manualstubpath);

The helperFunctionToUpdateManualStubs function updates the manual stub files in the test
sandbox.

The updated function definition of absoluteTempDifference is:

double absoluteTempDifference(double Tset, double Troom_in){
 return (double)fabs(Tset - Troom_in);
}

The updated function definition of pumpDirection is:

PumpDirection pumpDirection(double Tset, double Troom_in){
 return Tset > Troom_in ? HEATING : COOLING;
}

Update the Existing Test Sandbox

To use the manual stub functions, update the sandbox to reflect your changes. Setting the
Overwrite option to off preserves the changes made to the manualstub directory in the test
sandbox.

obj.createSandbox('Overwrite','off');

After updating the test sandbox, the autostub directory is empty because you defined all of the
undefined symbols in the specified custom code.

Import the Updated Test Sandbox

After updating the test sandbox, import the sandbox code into Simulink.

obj.import('Functions','heatpumpController');

The library contains a C Caller block called heatpumpController with updated ports, and The
internal test harness attached to the C Caller block is also updated.

The import function updates the existing library and imports the heatpumpController function.
Like when you used automatically generated stubs, the library is attached to a Simulink Data
Dictionary that defines pump_control_bus and PumpDirection as a Simulink.Bus object and a
Simulink enumeration signal, respectively.

The C Caller block ports reflect the changes made to the stub files. Because the manual
implementation of the absoluteTempDifference and pumpDirection functions does not use any
global variables, the C Caller block only has ports for the input arguments and return argument of
the heatpumpController function. The internal test harness attached to the C Caller block is also
updated.

 Import Custom Code for Unit Testing Using API Commands

9-9

You can use the created MLDATX test file to test the code. See “Conduct Unit Testing on Imported
Custom Code by Using the Wizardfilename” on page 9-11 for a testing example.

See Also
sltest.CodeImporter | sltest.CodeImporter.SandboxSettings | createSandbox |
Simulink.CodeImporter.CustomCode | import | Simulink.CodeImporter |
Simulink.CodeImporter.ParseInfo | Simulink.CodeImporter.Options

More About
• “Importing and Testing Custom C/C++ Code” on page 9-2

9 Testing Custom C/C++ Code

9-10

Conduct Unit Testing on Imported Custom Code by Using the
Wizardfilename

This example shows how to use the Code Importer wizard to import custom C code for a heat pump
controller into Simulink for unit testing. Unit tests test one or more functions in isolation from the
custom code library. For unit tests, the Simulink Test Code Importer wizard generates a test sandbox
and a library containing a C Caller block for each specified function from the custom code. For more
information see “Importing and Testing Custom C/C++ Code” on page 9-2.

This example uses only tempController.c file to create and import a test sandbox into Simulink.
You use the sandbox for performing unit testing only on the heatpumpController function in the
tempController.c file and not on the complete code. Generating the sandbox automatically creates
stubs for the utility functions used by the heatpumpController function,
absoluteTempDifference and pumpDirection. Since the utility functions are not defined in the
tempController.c file and the utilities.c file is not included, the code importer creates stubs
so the code does not error.

Heat Pump Controller Custom Code

The complete code for the heat pump controller is in these C code source and header files:

The source files are in the src directory:

• tempController.c
• utils.c

The header files are in the include directory:

• tempController.h
• utils.h
• controllerTypes.h

The tempController.c file contains the algorithm for the custom C code for a heat pump unit. The
heatpumpController function in that file uses the room temperature (Troom_in) and the set
temperature (Tset) as inputs. The output is the pump_control_bus type structure with signals that
control the fan, heat pump, and the direction of the heat pump (heat or cool). The fields in the
pump_control_bus structure are fan_cmd, pump_cmd, and pump_dir. The pump_control_bus
structure type is defined in the controllerTypes.h file. The output of the heatpumpController
function is:

The output of the heatpumpController algorithm is summarized in the following table:

Temperature System Fan Pump Pump
Condition State Command Command Direction

|Troom_in ‐ Tset| < DeltaT_fan Idle 0 0 IDLE
DelatT_fan <= |Troom_in ‐ Tset| < DeltaT_pump Fan only 1 0 IDLE

|Troom_in ‐ Tset| >= DeltaT_pump and Tset < Troom_in Cooling 1 1 COOLING
|Troom_in ‐ Tset| >= DeltaT_pump and Tset > Troom_in Heating 1 1 HEATING

The heatpumpController function uses two utility functions, absoluteTempDifference and
pumpDirection, which are defined in the utils.c file. The absoluteTempDifference function

 Conduct Unit Testing on Imported Custom Code by Using the Wizardfilename

9-11

returns the absolute difference between Tset and Troom_in as a double. The pumpDirection
function returns one of these PumpDirection type enum values:

Temperature Condition Pump Direction
Tset < Troom_in COOLING
Tset > Troom_in HEATING

The PumpDirection enum type is defined in the controllerTypes.h file.

Open the Code Importer Wizard

To open the Simulink Test C/C++ Code Importer wizard, first open the Simulink Test Manager.

sltest.testmanager.view

Then, select New > Test for C/C++ code.

Specify the Simulink Library and Testing Method

The wizard opens and displays the Welcome tab. Click Start to begin the import process.

On the Settings tab:

1 Enter the Simulink library file name. The generated Simulink library, test sandbox directory,
and test file (MLDATX) use this name. Enter heatpumpController.

2 Specify the Output folder in which to save the generated artifacts. Enter the name of a writable
folder.

9 Testing Custom C/C++ Code

9-12

3 Select C Code Unit Testing as the testing method.

The C Code Unit Testing method tests one C file or a subset of your custom code in isolation. This
method creates a test sandbox from the specified source file or files, and imports the test sandbox
into Simulink. Because the test sandbox only contains a subset of the C files, the Code Importer
wizard automatically creates stubs for all of the undefined symbols used in the C files. This method
supports testing C code only. For information on Integration Testing, see the TestType property of
sltest.CodeImporter.

Click Next.

Specify the Custom Code to Import

On the Specify Custom Code tab:

1 In Source files, specify the source file that contains the function to import for unit testing.
Enter .\src\tempController.c.

2 In Include directories, specify the directories on which the specified source files depend.
Enter .\include.

3 Defines specifies the compiler-specific defines. For this example, leave this field blank.

 Conduct Unit Testing on Imported Custom Code by Using the Wizardfilename

9-13

Click Next.

Specify the Test Sandbox Settings

On the Analyze tab, specify the sandbox settings.

Select the output test sandbox mode

Each of the three test sandbox modes has settings that determine how the Code Importer wizard
generates the sandbox and the sandbox artifacts.

Select Generate aggregated header. This test sandbox mode generates a minimal aggregated
header file for the specified source file. The aggregated header file contains all the declarations of the
symbols used by the specified source file.

Select the output test sandbox settings

Select only Copy source files. For this option, the Code Importer wizard copies the specified source
file to the sandbox src directory.

For information on the other output test sandbox modes and settings, see the properties of
sltest.CodeImporter.SandboxSettings.

9 Testing Custom C/C++ Code

9-14

Click Next to create the test sandbox with the specified settings.

Create the Test Sandbox

The specified library file name determines the name of the generated sandbox. For this example, the
sandbox name is heatpumpController_sandbox.

This example uses tempController.c and performs unit testing only on the heatpumpController
function. Generating the sandbox automatically creates stubs for the absoluteTempDifference
and pumpDirection utility functions used by the heatpumpController function, Since the utility
functions are not defined in the tempController.c file, the stubs prevent the code from erroring.

When the sandbox is created, the confirmation screen displays.

 Conduct Unit Testing on Imported Custom Code by Using the Wizardfilename

9-15

The output sandbox folder contains the following subfolders:

• src: This folder contains the copied source file or files, which for this example is
tempController.c.

• include: Depending on the test sandbox mode, this folder contains either the
aggregatedHeader.h or interfaceHeader.h file. This example uses the
aggregatedHeader.h file. The folder also contains and copies of the other header files required
for the compilation of the specified source file or files. The aggregatedHeader.h file contains all
the declarations of the symbols used by the specified source file. The interfaceHeader.h
contains the declarations for functions, global variables, and types used by the specified source
files. Simulink uses the generated interface header file during the import process.

• autostub: This folder contains the auto_stub.c and auto_stub.h files, which hold the
automatically generated stubs for absoluteTempDifference and pumpDirection utility
functions.

• manualstub: This folder contains the man_stub.c and man_stub.h files, which define any
manually specified stubs. By default, these files do not define any functions.

NOTE: Do not modify the files in the src, include, or autosub folders of the generated sandbox.

After the sandbox has been created, you can view the created files:

• Click Auto stub source and Auto stub header to open the auto_stub.c and auto_stub.h files,
respectively. In auto_stub.c, you can find the stubs for the utility functions used by
heatpumpController, absoluteTempDifference and pumpDirection. In auto_stub.h,
you can find the extern declarations of the stubbed functions.

9 Testing Custom C/C++ Code

9-16

• Click Manual stub header and Manual stub source to open the man_stub.h and man_stub.c
files, respectively. Because you selected Generate aggregated header for the sandbox mode,
sandbox, man_stub.h includes the aggregatedHeader.h file. By default, the manual stub files
do not have any function definitions.

Click Next.

Specify Import Settings

Specify Using Global Variables as Function Interfaces

When the wizard detects global variables in the sandbox or custom code, you have the option to use
those variables as input or outputs for the function and ports on the created C Caller block. For more
information, see “Enable global variables as function interfaces”.

Select Enable global variables as function interface option.

Click Next.

Select Functions to Import

On the Import page, select the heatpumpController function to import into the Simulink library.

 Conduct Unit Testing on Imported Custom Code by Using the Wizardfilename

9-17

Click Next.

Set the Block Port Specifications

For the function you selected on the previous page, the wizard generates a function port
specification. The selected ports are used for the generated C Caller block. Note that If the code to
import had a function with a pointer output, you would need to specify the size of the output port on
this page of the wizard.

9 Testing Custom C/C++ Code

9-18

In this example, the port specification table lists the formal arguments, Tset, Troom_in, and out,
for the heatpumpController function, and six more from the automatically generated stubs.
Because you selected Enable global variables as function interface, the wizard creates ports that
are generated from the stubs for the absoluteTempDifference and pumpDirection functions.
The stubs are in auto_stub.c.

These are the automatically generated global variables in the auto_stub.c file:

/***/
/* Generated Global Variables for Stubbed Functions Interface */
/***/
double SLStubIn_absoluteTempDifference_p1;
double SLStubIn_absoluteTempDifference_p2;
double SLStubOut_absoluteTempDifference;
double SLStubIn_pumpDirection_p1;
double SLStubIn_pumpDirection_p2;
PumpDirection SLStubOut_pumpDirection;

double absoluteTempDifference(double absoluteTempDifference_p1, double absoluteTempDifference_p2)
{
 SLStubIn_absoluteTempDifference_p1 = absoluteTempDifference_p1;
 SLStubIn_absoluteTempDifference_p2 = absoluteTempDifference_p2;
 return SLStubOut_absoluteTempDifference;
}

PumpDirection pumpDirection(double pumpDirection_p1, double pumpDirection_p2)
{

 Conduct Unit Testing on Imported Custom Code by Using the Wizardfilename

9-19

 SLStubIn_pumpDirection_p1 = pumpDirection_p1;
 SLStubIn_pumpDirection_p2 = pumpDirection_p2;
 return SLStubOut_pumpDirection;
}

In the automatically generated stubs for absoluteTempDifference, the global variables
SLStubIn_absoluteTempDifference_p1 and SLStubIn_absoluteTempDifference_p2 save
the input arguments. The function returns the value stored in
SLStubOut_absoluteTempDifference as its output. Similarly, pumpDirection saves the input
arguments and returns SLStubOut_pumpDirection.

In this example, absoluteTempDifference, SLStubIn_absoluteTempDifference_p1 and
SLStubIn_absoluteTempDifference_p2 are outputs. The global variable
SLStubOut_absoluteTempDifference is an input.

Do not make any changes to the port specification. Click Next.

Specify Types to Import

Select the types to import into Simulink. Because the pump_control_bus and PumpDirection
types are required by the heatpumpController function, they are selected and dimmed. The wizard
creates a Simulink data dictionary containing these types and links the dictionary to the generated
library.

Click Next to display a summary of the generated library. Click Next again to continue.

9 Testing Custom C/C++ Code

9-20

Create a Test Harness

Select Automatically create test harness for all imported functions.

Click Next to generate the Simulink library.

After the code imports, the wizard creates a library attached to a Simulink data dictionary that
defines pump_control_bus and PumpDirection as a Simulink.Bus object and a Simulink
enumeration signal, respectively.

The C Caller block created in the Simulink library is:

 Conduct Unit Testing on Imported Custom Code by Using the Wizardfilename

9-21

Click in the lower right corner of the block to open its internal test harness:

On the Code Import Successful page, click Change the MATLAB folder to the output folder.

Do not click Finish. Continue to the following section to manually update the stubs for undefined
symbols.

Update Test Sandbox with Manual Stubbing

To manually create the stub files for absoluteTempDifference and pumpDirection, click the
Analyze tab in the wizard toolbar and then click Next twice to display this page:

9 Testing Custom C/C++ Code

9-22

The Code Importer detects the sandbox you created. Select Overwrite and then, click Next.

Outside of the wizard, but leaving the wizard open, copy the files in the updated_manualstub
directory of the sandbox and paste them into the heatpumpController/manualstub directory.

In the man_stub.c file, edit the function definition of absoluteTempDifference:

double absoluteTempDifference(double Tset, double Troom_in){
 return (double)fabs(Tset - Troom_in);
}

and the function definition of pumpDirection:

PumpDirection pumpDirection(double Tset, double Troom_in){
 return Tset > Troom_in ? HEATING : COOLING;
}

Return to the Code Importer wizard.

 Conduct Unit Testing on Imported Custom Code by Using the Wizardfilename

9-23

After modifying the manual stub files, return to the wizard and click Update Sandbox.

Because you manually defined the definitions for the absoluteTempDifference and
pumpDirection functions, there are no symbols to automatically stub, no artifacts are generated for
the autostub directory in the sandbox and it is empty.

9 Testing Custom C/C++ Code

9-24

Click Next until you reach the block port specification page:

 Conduct Unit Testing on Imported Custom Code by Using the Wizardfilename

9-25

Because the manual implementation of absoluteTempDifference and pumpDirection does not
have any global variables, only the formal arguments and the return argument appear as ports.

Click Next.

On the Create Simulink Library tab, select Overwrite.

9 Testing Custom C/C++ Code

9-26

Click Next through the remaining pages until you reach the Code Import Successful page.

Then click Finish. If desired, click Yes in the dialog box that opens to save the current import
settings as a JSON file, which you use to reload the settings into another Code Importer wizard
session.

Test the Imported Code

In the Test Manager, in the Test Browser pane expand the heatpumpController test file and
heatpumpController/heatpumpController test suite. Then select the
heatpumpController_Harness1 test case.

Specify Simulation Stop Time

In the System Under Test section, expand the Simulation Setting and Release Overrides section
and set the Stop Time to 200.

 Conduct Unit Testing on Imported Custom Code by Using the Wizardfilename

9-27

Add Inputs

In the Inputs section, at the bottom of the External Inputs table, click Add to open the Add Input
dialog box.

In the Input File Specification, enter heatpumpControllerHarnessInput.xlsx.

Under Input Mapping, select Block Name as the Mapping Mode and click Map Inputs. After the
inputs appear in the Mapping Status table, click OK.

9 Testing Custom C/C++ Code

9-28

Add Assessments

In the Logical and Temporal Assessments section, add assessments for each temperature
condition:

 Conduct Unit Testing on Imported Custom Code by Using the Wizardfilename

9-29

For information on assessments, see “Assess Temporal Logic by Using Temporal Assessments” on
page 3-92.

In the Symbols pane, add the symbols definitions:

Run the Test and View Results

Click Run to run the test.

9 Testing Custom C/C++ Code

9-30

When the test completes, in the Results and Artifacts pane, expand the Results. All of the
assessments pass.

To view the coverage results, select heatpumpController_Harness1 under Results and expand the
Coverage Results section. The coverage is 100% for both the tempController.c and man_stub.c
files.

See Also

More About
• “Importing and Testing Custom C/C++ Code” on page 9-2

 Conduct Unit Testing on Imported Custom Code by Using the Wizardfilename

9-31

Verification and Validation

• “Test Model Against Requirements and Report Results” on page 10-2
• “Analyze a Model for Standards Compliance and Design Errors” on page 10-7
• “Perform Functional Testing and Analyze Test Coverage” on page 10-9
• “Analyze Code and Test Software-in-the-Loop” on page 10-12

10

Test Model Against Requirements and Report Results

Requirements – Test Traceability Overview
Traceability between requirements and test cases helps you interpret test results and see the extent
to which your requirements are verified. You can link a requirement to elements that help verify it,
such as test cases in the Test Manager, verify statements in a Test Sequence block, or Model
Verification blocks in a model. When you run tests, a pass/fail summary appears in your requirements
set.

This example demonstrates a common requirements-based testing workflow for a cruise control
model. You start with a requirements set, a model, and a test case. You add traceability between the
tests and the safety requirements. You run the test, summarize the verification status, and report the
results.

In this example, you conduct a simple test of two requirements in the set:

• That the cruise control system transitions to disengaged from engaged when a braking event has
occurred

• That the cruise control system transitions to disengaged from engaged when the current vehicle
speed is outside the range of 20 mph to 90 mph.

Display the Requirements
1 Create a copy of the project in a working folder. The project contains data, documents, models,

and tests. Enter:

path = fullfile(matlabroot,'toolbox','shared','examples',...
'verification','src','cruise')
run(fullfile(path,'slVerificationCruiseStart'))

2 In the project models folder, open the simulinkCruiseAddReqExample.slx model.
3 Display the requirements. Click the icon in the lower-right corner of the model canvas, and

select Requirements. The requirements appear below the model canvas.

10 Verification and Validation

10-2

4 Expand the requirements information to include verification and implementation status. Right-
click a requirement and select Verification Status and Implementation Status.

5 In the Project window, open the Simulink Test file slReqTests.mldatx from the tests folder.
The test file opens in the Test Manager.

Link Requirements to Tests
Link the requirements to the test case.

1 In the Project window, open the Simulink Test file slReqTests.mldatx from the tests folder.
The test file opens in the Test Manager. Explore the test suite and select Safety Tests.

Return to the model. Right-click on requirement S 3.1 and select Link from Selected Test
Case.

A link to the Safety Tests test case is added to Verified by. The yellow bars in the Verified
column indicate that the requirements are not verified.

 Test Model Against Requirements and Report Results

10-3

2 Also add a link for item S 3.4.

Run the Test
The test case uses a test harness SafetyTest_Harness1. In the test harness, a test sequence sets
the input conditions and checks the model behavior:

• The BrakeTest sequence engages the cruise control, then applies the brake. It includes the
verify statement

verify(engaged == false,...
 'verify:brake',...
 'system must disengage when brake applied')

• The LimitTest sequence engages the cruise control, then ramps up the vehicle speed until it
exceeds the upper limit. It includes the verify statement.

verify(engaged == false,...
 'verify:limit',...
 'system must disengage when limit exceeded')

1 Return to the Test Manager. To run the test case, click Run.
2 When the test finishes, review the results. The Test Manager shows that both assessments pass

and the plot provides the detailed results of each verify statement.

10 Verification and Validation

10-4

3 Return to the model and refresh the Requirements. The green bar in the Verified column
indicates that the requirement has been successfully verified.

Report the Results
1 Create a report using a custom Microsoft Word template.

a From the Test Manager results, right-click the test case name. Select Create Report.
b In the Create Test Result Report dialog box, set the options:

• Title — SafetyTest
• Results for — All Tests
• File Format — DOCX
• For the other options, keep the default selections.

c Enter a file name and select a location for the report.
d For the Template File, select the ReportTemplate.dotx file in the documents project

folder.
e Click Create.

 Test Model Against Requirements and Report Results

10-5

2 Review the report.

a The Test Case Requirements section specifies the associated requirements
b The Verify Result section contains details of the two assessments in the test, and links to

the simulation output.

See Also

Related Examples
• “Link to Requirements” on page 1-2
• “Validate Requirements Links in a Model” (Requirements Toolbox)
• “Customize Requirements Traceability Report for Model” (Requirements Toolbox)

External Websites
• Requirements-Based Testing Workflow

10 Verification and Validation

10-6

https://youtu.be/0STxZbqOUXg

Analyze a Model for Standards Compliance and Design Errors

Standards and Analysis Overview
During model development, check and analyze your model to increase confidence in its quality. Check
your model against standards such as MAB style guidelines and high-integrity system design
guidelines such as DO-178 and ISO 26262. Analyze your model for errors, dead logic, and conditions
that violate required properties. Using the analysis results, update your model and document
exceptions. Report the results using customizable templates.

Check Model for Style Guideline Violations and Design Errors
This example shows how to use the Model Advisor to check a cruise control model for MathWorks®

Advisory Board (MAB) style guideline violations and design errors. Select checks and run the analysis
on the model. Iteratively debug issues using the Model Advisor and rerun checks to verify that it is in
compliance. After passing your selected checks, report results.

Check Model for MAB Style Guideline Violations

In Model Advisor, you can check that your model complies with MAB modeling guidelines.

1 Create a copy of the project in a working folder. On the command line, enter

path = fullfile(matlabroot,'toolbox','shared','examples',...
'verification','src','cruise')
run(fullfile(path,'slVerificationCruiseStart'))

2 Open the model. On the command line, enter

open_system simulinkCruiseErrorAndStandardsExample
3 In the Modeling tab, select Model Advisor.
4 Click OK to choose simulinkCruiseErrorAndStandardsExample from the System Hierarchy.
5 Check your model for MAB style guideline violations using Simulink Check.

 Analyze a Model for Standards Compliance and Design Errors

10-7

a In the left pane, in the By Product > Simulink Check > Modeling Standards > MAB
Checks folder, select:

• Check Indexing Mode
• Check model diagnostic parameters

b Right-click on the MAB Checks node and select Run Selected Checks.
c To review the configuration parameter settings that violate MAB style guidelines, run the

Check model diagnostic parameters check.
d The analysis results appear in the right pane on the Report tab. Report displays the violation

details and the recommended action.
e Click the parameter hyperlinks, which opens the Configuration Parameters dialog box, and

update the model diagnostic parameters. Save the model.
f To verify that your model passes, rerun the check. Repeat steps from c to e, if necessary, to

reach compliance.
g To generate a results report of the Simulink Check checks, select the MAB Checks node,

and then, from the toolstrip, clickReport.

Check Model for Design Errors

While in the Model Advisor, you can also check your model for hidden design errors using Simulink
Design Verifier.

1 In the left pane, in the By Products > Simulink Design Verifier folder, select Design Error
Detection.

2 If not already checked, click the box beside Design Error Detection. All checks in the folder are
selected.

3 From the tool strip, click Run Check.
4 After the Model Advisor analysis, from the tool strip, click Report. This generates a HTML report

of the check analysis.
5 In the generated report, click a Simulink Design Verifier Results Summaryhyperlink. The

dialog box provides tools to help you diagnose errors and warnings in your model.

a Review the analysis results on the model. Click the Compute target speed subsystem.
The Simulink Design Verifier Results Inspector window provides derived ranges that can
help you understand the source of an error by identifying the possible signal values.

b Review the harness model or create one if it does not already exist.
c View tests and export test cases.
d Review the analysis report. To see a detailed analysis report, click HTML or PDF.

See Also

Related Examples
• “Check Model Compliance by Using the Model Advisor” (Simulink Check)
• “Collect Model Metrics Using the Model Advisor” (Simulink Check)
• “Run a Design Error Detection Analysis” (Simulink Design Verifier)
• “Prove Properties in a Model” (Simulink Design Verifier)

10 Verification and Validation

10-8

Perform Functional Testing and Analyze Test Coverage
Functional testing begins with building test cases based on requirements. These tests can cover key
aspects of your design and verify that individual model components meet requirements. Test cases
include inputs, expected outputs, and acceptance criteria.

By collecting individual test cases within test suites, you can run functional tests systematically. To
check for regression, add baseline criteria to the test cases and test the model iteratively. Coverage
measurement reflects the extent to which these tests have fully exercised the model. Coverage
measurement also helps you to add tests and requirements to meet coverage targets.

Incrementally Increase Test Coverage Using Test Case Generation
This example shows a functional testing-based testing workflow for a cruise control model. You start
with a model that has tests linked to an external requirements document, analyze the model for
coverage in Simulink Coverage, incrementally increase coverage with Simulink Design Verifier, and
report the results.

Explore the Test Harness and the Model

1 Create a copy of the project in a working folder. At the command line, enter:

path = fullfile(matlabroot,'toolbox','shared','examples',...
'verification','src','cruise')
run(fullfile(path,'slVerificationCruiseStart'))

2 Open the model and the test harness. At the command line, enter:

open_system simulinkCruiseAddReqExample
sltest.harness.open('simulinkCruiseAddReqExample','SafetyTest_Harness1')

3 Load the test suite from “Test Model Against Requirements and Report Results” on page 10-2
and open the Simulink Test Manager. At the command line, enter:

 Perform Functional Testing and Analyze Test Coverage

10-9

sltest.testmanager.load('slReqTests.mldatx')
sltest.testmanager.view

4 Open the test sequence block. The sequence tests that the system disengages when the:

• Brake pedal is pressed
• Speed exceeds a limit

Some test sequence steps are linked to requirements document
simulinkCruiseChartReqs.docx.

Measure Model Coverage

1 In the Simulink Test Manager, click the slReqTests test file.
2 To enable coverage collection for the test file, in the right page under Coverage Settings:

• Select Record coverage for referenced models
• Use Coverage filter filename to specify a coverage filter to use for the coverage analysis.

The default setting honors the model configuration parameter settings. Leaving the field
empty attaches no coverage filter.

• Select Decision, Condition, and MCDC.
3 To run the tests, on the Test Manager toolstrip, click Run.
4 When the test finishes select the Results in the Test Manager. The aggregated coverage results

show that the example model achieves 50% decision coverage, 41% condition coverage, and 25%
MCDC coverage.

Generate Tests to Increase Model Coverage

1 Use Simulink Design Verifier to generate additional tests to increase model coverage. In Results
and Artifacts, select the slReqTests test file and open the Aggregated Coverage Results
section located in the right pane.

2 Right-click the test results and select Add Tests for Missing Coverage.
3 Under Harness, choose Create a new harness.
4 Click OK to add tests to the test suite using Simulink Design Verifier. The model being tested

must either be on the MATLAB path or in the working folder.
5 On the Test Manager toolstrip, click Run to execute the updated test suite. The test results

include coverage for the combined test case inputs, achieving increased model coverage.

10 Verification and Validation

10-10

Alternatively, you can create and use tests to increase coverage programmatically by using
sltest.testmanager.addTestsForMissingCoverage and
sltest.testmanager.TestOptions.

See Also

Related Examples
• “Link to Requirements” on page 1-2
• “Assess Model Simulation Using verify Statements” on page 3-18
• “Compare Model Output to Baseline Data” on page 6-7
• “Generate Test Cases for Model Decision Coverage” (Simulink Design Verifier)
• “Increase Test Coverage for a Model” on page 6-136

 Perform Functional Testing and Analyze Test Coverage

10-11

Analyze Code and Test Software-in-the-Loop

Code Analysis and Testing Software-in-the-Loop Overview
You can analyze code to detect errors, check standards compliance, and evaluate key metrics such as
length and cyclomatic complexity. For handwritten code, you typically check for run-time errors with
static code analysis and run test cases that evaluate the code against requirements and evaluate code
coverage. Based on the results, you refine the code and add tests.

In this example, you generate code and demonstrate that the code execution produces equivalent
results to the model by using the same test cases and baseline results. Then you compare the code
coverage to the model coverage. Based on test results, add tests and modify the model to regenerate
code.

Analyze Code for Defects, Metrics, and MISRA C:2012
This workflow describes how to check if your model produces MISRA® C:2012 compliant code and
how to check your generated code for code metrics and defects. To produce more MISRA compliant
code from your model, you use the code generation and Model Advisor. To check whether the code is
MISRA compliant, you use the Polyspace MISRA C:2012 checker and report generation capabilities.
For this example, you use the model simulinkCruiseErrorAndStandardsExample. To open the
model:

1 Open the project.

path = fullfile(matlabroot,'toolbox','shared','examples',...
'verification','src','cruise')
run(fullfile(path,'slVerificationCruiseStart'))

2 From the project, open the model simulinkCruiseErrorAndStandardsExample.

10 Verification and Validation

10-12

Run Code Generator Checks

Before you generate code from your model, use the Code Generation Advisor to check your model so
that it generates code more compliant with MISRA C and more compatible with Polyspace.

1 Right-click Compute target speed and select C/C++ Code > Code Generation Advisor.
2 Select the Code Generation Advisor folder. In the right pane, move Polyspace to Selected

objectives - prioritized. The MISRA C:2012 guidelines objective is already selected.

3 Click Run Selected Checks.

The Code Generation Advisor checks whether the model includes blocks or configuration settings
that are not recommended for MISRA C:2012 compliance and Polyspace code analysis. For this

 Analyze Code and Test Software-in-the-Loop

10-13

model, the check for incompatible blocks passes, but some configuration settings are
incompatible with MISRA compliance and Polyspace checking.

4 Click the check that did not pass. Accept the parameter changes by selecting Modify
Parameters.

5 Rerun the check by selecting Run This Check.

Run Model Advisor Checks

Before you generate code from your model, use the Model Advisor to check your model for MISRA C
and Polyspace compliance. This example shows you how to use the Model Advisor to check your
model before generating code.

1 At the bottom of the Code Generation Advisor window, select Model Advisor.
2 Under the By Task folder, select the Modeling Standards for MISRA C:2012 advisor checks.
3 Click Run Checks and review the results.
4 If any of the tasks fail, make the suggested modifications and rerun the checks until the MISRA

modeling guidelines pass.

Generate and Analyze Code

After you have done the model compliance checking, you can generate the code. With Polyspace, you
can check your code for compliance with MISRA C:2012 and generate reports to demonstrate
compliance with MISRA C:2012.

1 In the Simulink editor, right-click Compute target speed and select C/C++ Code > Build This
Subsystem.

2 Use the default settings for the tunable parameters and select Build.
3 After the code is generated, in the Simulink Editor, right-click Compute target speed and select

Polyspace > Options.
4 Click Configure to choose more advanced Polyspace analysis options in the Polyspace

configuration window.

10 Verification and Validation

10-14

5 On the left pane, click Coding Standards & Code Metrics, then select Calculate Code
Metrics to enable code metric calculations for your generated code.

6 Save and close the Polyspace configuration window.
7 From your model, right-click Compute target speed and select Polyspace > Verify > Code

Generated For Selected Subsystem.

Polyspace Bug Finder analyzes the generated code for a subset of MISRA checks. You can see the
progress of the analysis in the MATLAB Command Window. After the analysis finishes, the
Polyspace environment opens.

Review Results

The Polyspace environment shows you the results of the static code analysis.

1 Expand the tree for rule 8.7 and click through the different results.

Rule 8.7 states that functions and objects should not be global if the function or object is local. As
you click through the 8.7 violations, you can see that these results refer to variables that other
components also use, such as CruiseOnOff. You can annotate your code or your model to justify
every result. Because this model is a unit in a larger program, you can also change the
configuration of the analysis to check only a subset of MISRA rules.

 Analyze Code and Test Software-in-the-Loop

10-15

2 In your model, right-click Compute target speed and select Polyspace > Options.
3 Set the Settings from option to Project configuration to choose a subset of MISRA rules

in the Polyspace configuration.
4 Click Configure.
5 In the Polyspace window, on the left pane, click Coding Standards & Code Metrics. Then

select Check MISRA C:2012 and, from the drop-down list, select single-unit-rules. Now
Polyspace checks only the MISRA C:2012 rules that are applicable to a single unit.

6 Save and close the Polyspace configuration window.
7 Rerun the analysis with the new configuration.

The rules Polyspace showed previously were found because the model was analyzed by itself.
When you limited the rules Polyspace checked to the single-unit subset, Polyspace found only two
violations.

10 Verification and Validation

10-16

When you integrate this model with its parent model, you can add the rest of the MISRA C:2012
rules.

Generate Report

To demonstrate compliance with MISRA C:2012 and report on your generated code metrics, you must
export your results. If you want to generate a report every time you run an analysis, see Generate
report (Polyspace Bug Finder).

1 If they are not open already, open your results in the Polyspace environment.
2 From the toolbar, select Reporting > Run Report.
3 Select BugFinderSummary as your report type.
4 Click Run Report.

The report is saved in the same folder as your results.
5 To open the report, select Reporting > Open Report.

Test Code Against Model Using Software-in-the-Loop Testing
You previously showed that the model functionality meets its requirements by running test cases
based on those requirements. Now run the same test cases on the generated code to show that the
code produces equivalent results and fulfills the requirements. Then compare the code coverage to
the model coverage to see the extent to which the tests exercised the generated code.

1 In MATLAB, in the project window, open the tests folder, then open SILTests.mldatx. The
file opens in the Test Manager.

 Analyze Code and Test Software-in-the-Loop

10-17

2 Review the test case. On the Test Browser pane, navigate to SIL Equivalence Test Case.
This equivalence test case runs two simulations for the
simulinkCruiseErrorAndStandardsExample model using a test harness.

• Simulation 1 is a model simulation in normal mode.
• Simulation 2 is a software-in-the-loop (SIL) simulation. For the SIL simulation, the test case

runs the code generated from the model instead of running the model.

The equivalence test logs one output signal and compares the results from the simulations. The
test case also collects coverage measurements for both simulations.

3 Run the equivalence test. Select the test case and click Run.
4 Review the results in the Test Manager. In the Results and Artifacts pane, select SIL

Equivalence Test Case to see the test results. The test case passed and the results show that
the code produced the same results as the model for this test case.

5 Expand the Coverage Results section of the results. The coverage measurements show the
extent to which the test case exercised the model and the code. When you run multiple test
cases, you can view aggregated coverage measurements in the results for the whole run. Use the
coverage results to add tests and meet coverage requirements, as shown in “Perform Functional
Testing and Analyze Test Coverage” (Simulink Check).

You can also test the generated code on your target hardware by running a processor-in-the-loop
(PIL) simulation. By adding a PIL simulation to your test cases, you can compare the test results and
coverage results from your model to the results from the generated code as it runs on the target
hardware. For more information, see “Code Verification Through Software-in-the-Loop and Processor-
in-the-Loop Execution” (Embedded Coder).

10 Verification and Validation

10-18

See Also

Related Examples
• “Run Polyspace Analysis on Code Generated with Embedded Coder” (Polyspace Bug Finder)
• “Test Two Simulations for Equivalence” on page 6-37
• “Export Test Results” on page 7-16

 Analyze Code and Test Software-in-the-Loop

10-19

	Test Strategies
	Link to Requirements
	Requirements Traceability Considerations
	Establish Requirements Traceability for Testing

	Requirements-Based Testing for Model Development

	Test Harness
	Test Harness and Model Relationship
	Harness-Model Relationship for a Model Component
	Harness-Model Relationship for a Top-Level Model
	Resolving Parameters
	Test Harness Considerations

	Test Harness Construction for Specific Model Elements
	Signal Conversion
	Function Calls
	Physical Signal Connections
	Bus Signals
	String Signals
	Non-Graphical Connections
	Export Function Models
	Execution Semantics
	Sample Time Specification

	Create Test Harnesses and Select Properties
	Create a Test Harness For a Top Level Model
	Create a Test Harness for a Model Component
	Preview and Open Test Harnesses
	Change Test Harness Properties
	Considerations for Selecting Test Harness Properties
	Test Harness Properties
	Customize Test Harness Creation Default Property Values

	Refine, Test, and Debug a Subsystem
	Model and Requirements
	Create a Harness for the Controller
	Inspect and Refine the Controller
	Add Test Inputs and Test the Controller
	Debug the Controller

	Manage Test Harnesses
	Internal and External Test Harnesses
	Manage External Test Harnesses
	Convert Between Internal and External Test Harnesses
	Preview and Open Test Harnesses
	Model and Test Harness Locking
	Find Test Cases Associated with a Test Harness
	Export Test Harnesses to Standalone Models
	Move and Clone Test Harnesses
	Clone and Export a Test Harness to a Separate Model
	Delete Test Harnesses Programmatically
	Export Test Harness to Previous Version

	Customize Test Harnesses
	Callback Function Definition and Harness Information
	Display Harness Information struct Contents
	Share Data Between Callbacks
	Customize a Test Harness to Create Mixed Source Types
	Test Harness Callback Example

	Create Test Harnesses from Standalone Models
	Test Harness Import Workflow
	Component Compatibility for Test Harness Import
	Import a Standalone Model as a Test Harness

	Synchronize Changes Between Test Harness and Model
	Set Synchronization for a New Test Harness
	Change Synchronization of an Existing Test Harness
	Synchronize Configuration Set and Model Workspace Data
	Check for Unsynchronized Component Differences
	Rebuild a Test Harness
	Push Changes from Test Harness to Model
	Check Component and Push Parameter to Main Model

	Test Library Blocks
	Library Testing Workflow
	Library and Linked Subsystem Test Harnesses
	Edit Library Block from a Test Harness
	Testing a Library and a Linked Block
	SIL Testing a Reusable Library Subsystem

	Test Sequences and Assessments
	Test Sequence Basics
	Test Sequence Hierarchy
	Test Sequence Scenarios
	Transition Types
	Create a Basic Test Sequence
	Create Basic Test Assessments

	Use Stateflow Chart for Test Harness Inputs and Scheduling
	Use a Stateflow Chart for Test Harness Scheduling
	Use a Stateflow Chart as a Test Harness Source
	Stateflow Chart as Test Harness Scheduler and Source

	Assess Simulation and Compare Output Data
	Overview
	Compare Simulation Data to Baseline Data or Another Simulation
	Post-Process Results With a Custom Script
	Run-Time Assessments
	Logical and Temporal Assessments

	Assess Model Simulation Using verify Statements
	Activate verify Statements in the Test Assessment Block
	Author verify Statements

	Verify Multiple Conditions at a Time
	Assess a Model by Using When Decomposition
	Test Sequence Editor
	Define Test Sequences
	Manage Test Steps
	Manage Input, Output, and Data Objects
	Find and Replace
	Automatic Syntax Correction
	Output and View Active Step Data

	Transitions, Temporal Operators, and Messages in Test Sequence Blocks
	Transition Between Steps Using Temporal or Signal Conditions
	Temporal Operators
	Transition Operators
	Use Messages in Test Sequences

	Generate Test Signals
	Signal Generation Functions
	Sinusoidal and Random Number Functions in Test Sequences

	Using an External Function in a Test Sequence Block
	Programmatically Create a Test Sequence
	Programmatically Create and Run Test Sequence Scenarios
	Use Test Sequence Scenarios in the Test Sequence Editor and Test Manager
	Scenario Parameter Section
	Test Sequence and Assessment Syntax
	Assessment Statements
	Temporal Operators
	Transition Operators
	Signal Generation Functions
	Logical Operators
	Relational Operators

	Debug a Test Sequence
	View Test Step Execution During Simulation
	Set Breakpoints to Enable Debugging
	View Data Values During Simulation
	Step Through Simulation

	Test Downshift Points of a Transmission Controller
	Examine Model Verification Results by Using Simulation Data Inspector
	Fix Requirements-Based Testing Issues
	Assess Temporal Logic by Using Temporal Assessments
	Create a Temporal Assessment
	Define Temporal Assessment Conditions
	Evaluate the SUT
	Link Temporal Assessments to Requirements

	Test Traffic Light Control by Using Logical and Temporal Assessments
	Logical and Temporal Assessment Syntax
	Bounds Check Assessments
	Trigger-Response Assessments
	Custom Assessments
	Logical and Temporal Assessment Conditions
	Define Variables in the Assessment Callback Section

	Observers
	Access Model Data Wirelessly by Using Observers
	Observer Reference Block
	Connect Signals or Other Model Data Using an Observer Port Block
	Trace Observed Items to Model Signals and Objects
	Simulate a System Model with an Observer Reference Block
	Verify Heat Pump Temperature by Using Observers
	Convert Verification Subsystem to an Observer Reference
	Observer Considerations and Limitations

	Observe Messages
	Message Bus Elements
	Add a Message Observer
	Observe a Message Signal

	Test Harness Software- and Processor-in-the-Loop
	SIL Verification for a Subsystem
	Create a SIL Verification Harness for a Controller
	Configure and Simulate a SIL Verification Harness
	Compare the SIL Block and Model Controller Outputs

	Use SIL/PIL to Verify Generated Code from an Earlier Release
	Reuse Generated Code
	SIL Verification of a Subsystem using Code Generated from an Earlier Release

	Code Generation Verification Workflow with Simulink Test
	Import Test Cases for Equivalence Testing
	Settings for Test Case Simulations
	Top-Level Model
	Model Block in SIL/PIL Mode
	Model Block or Reusable Library Subsystem in a Test Harness
	Back-to-Back Testing a Model Using the SIL/PIL Manager App

	Test Integrated Code
	Test Integrated C Code
	Test Code in S-Functions
	S-Function Testing Example

	Test Manager Test Cases
	Manage Test File Dependencies
	Package a Test File Using Projects
	Find Test File Dependencies and Impact
	Share a Test File with Dependencies

	Compare Model Output to Baseline Data
	Create the Test Case
	Run the Test Case and View Results

	Creating Baseline Tests
	Batch Equivalence Testing of Multiple Components
	Test a Simulation for Run-Time Errors
	Configure the Model
	Create the Test Case
	Run the Test Case
	View the Error

	Automatically Create a Set of Test Cases
	Creating Test Cases from Model Elements
	Generating Test Cases from a Model

	Generate Tests and Test Harnesses for a Component or Model
	Open the Create Test for Component Wizard
	Select Model or Component to Test
	Set Up Test Inputs
	Test Method
	Save Test Data
	Generate the Test Harness and Test Case

	Override Model Parameters in a Test Case
	Test Two Simulations for Equivalence
	Create and Run a Back-to-Back Test
	Run the Back-to-Back Test
	View the Back-to-Back Test Results

	Testing AUTOSAR Compositions
	Automate Testing for Highway Lane Following
	Synchronize Tests
	Use External Excel or MAT-File Data in Test Cases
	Data Mapping
	Create a Test Case from an Excel Spreadsheet
	Import an Excel Spreadsheet into an Existing Test Case
	Add Multiple Microsoft Excel Spreadsheets as Input to a Test Case
	Include Microsoft Excel Test Data in Test Results
	Importing Test Data from Microsoft Excel
	Add a MAT-File as an External Input

	Create Data Files for Test Case Input
	Generate an Excel Template
	Format Test Case Data in Excel
	Create a MAT-File for Input Data

	Capture Simulation Data in a Test Case
	Add Logged Signals When Creating a Test Harness
	Add Logged Signals in the Test Manager
	Capture Data from Local and Global Data Stores
	Logging Leaf Signals of a Bus

	Run Tests in Multiple Releases of MATLAB
	Considerations for Testing in Multiple Releases
	Add Releases Using Test Manager Preferences
	Run Baseline Tests in Multiple Releases
	Run Equivalence Tests in Multiple Releases
	Run Simulation Tests in Multiple Releases
	Assess Temporal Logic in Multiple Releases
	Collect Coverage in Multiple-Release Tests

	Examine Test Failures and Modify Baselines
	Examine Test Failure Signals and Update Baseline Test
	Manually Update Signal Data in a Baseline

	Create and Run Test Cases with Scripts
	Create and Run a Baseline Test Case
	Create and Run an Equivalence Test Case
	Run a Test Case and Collect Coverage
	Create and Run Test Case Iterations

	Test Models Using MATLAB-Based Simulink Tests
	Classes and Methods
	Creating a Baseline MATLAB-based Simulink Tests
	Linking to Requirements from a MATLAB-Based Simulink Test File
	Limitations of MATLAB- based Tests

	Using MATLAB-Based Simulink Tests in the Test Manager
	Collect Coverage Using MATLAB-Based Simulink Tests
	Test Iterations
	Create Table Iterations
	Create Scripted Iterations
	Sweep Through a Set of Parameters

	Capture Baseline Data from Iterations
	Collect Coverage in Tests
	Set Up Coverage Collection Using the Test Manager
	View Coverage Results in the Test Manager
	Add Tests for Missing Coverage
	Coverage Filtering Using the Test Manager

	Test Coverage for Requirements-Based Testing
	Increase Test Coverage for a Model
	Run Tests Using Parallel Execution
	When Do Tests Benefit from Using Parallel Execution?
	Use Parallel Execution

	Set Signal Tolerances
	Modify Criteria Tolerances
	Change Leading Tolerance in a Baseline Comparison Test

	Specify Test Properties in the Test Manager
	Test Case, Test Suite, and Test File Sections Summary
	Tags
	Description
	Requirements
	System Under Test
	Simulation 1 and Simulation 2
	Parameter Overrides
	Callbacks
	Inputs
	Simulation Outputs
	Configuration Settings Overrides
	Baseline Criteria
	Equivalence Criteria
	Iterations
	Logical and Temporal Assessments
	Custom Criteria
	Coverage Settings
	Test File Options
	Test File Content

	Preferences
	Increase Coverage by Generating Test Inputs
	Overall Workflow
	Test Case Generation Example

	Process Test Results with Custom Scripts
	MATLAB Testing Framework
	Define a Custom Criteria Script
	Reuse Custom Criteria and Debug Using Breakpoints
	Custom Criteria Programmatic Interface Example

	Assess the Damping Ratio of a Flutter Suppression System
	Create, Store, and Open MATLAB Figures
	Create a Custom Figure for a Test Case
	Include Figures in a Report

	Test Models Using MATLAB Unit Test
	Overall Workflow
	Considerations
	Comparison of Test Nomenclature
	Basic Workflow Using MATLAB® Unit Test

	Output Results for Continuous Integration Systems
	Test a Model for Continuous Integration Systems
	Model Coverage Results for Continuous Integration

	Parametric Sweep for a Simscape Thermal Model
	Projector Controller Testing Using verify and Real-Time Tests
	Test Execution Order
	Single Test Case on a Single Model
	Multiple Test Cases on Multiple Models
	Multiple Test Cases in a Single Test Suite on a Single Model
	Multiple Test Cases in Multiple Test Suites on a Single Model
	Test Case with Parameter Overrides

	Filter Test Execution and Results
	Add Tags
	Filter Tests and Results
	Run Filtered Tests

	Test Manager Results and Reports
	View Test Case Results
	View Results Summary
	Visualize Test Case Simulation Output and Criteria

	Debugging Test Failures Using Model Slicer
	Export Test Results
	Generate Test Results Reports
	Create a Test Results Report
	Save Reporting Options with a Test File
	Generate Reports Using Templates

	Generating a Test Results Report
	Customize Test Results Reports
	Inherit the Report Class
	Method Hierarchy
	Modify the Class
	Generate a Report Using the Custom Class

	Append Code to a Test Report
	Results Sections
	Summary
	Test Requirements
	Iteration Settings
	Errors
	Logs
	Description
	Parameter Overrides
	Coverage Results
	Aggregated Coverage Results
	Scope coverage results to linked requirements
	Add Tests for Missing Coverage
	Applied Coverage Filters

	Generate Test Specification Reports
	Customize Test Specification Reports
	Remove Content or Change Report Formatting and Section Ordering
	Add Content to a Test Specification Report

	Debugging Equivalence Test Failures Using Model Slicer

	Real-Time Testing
	Test Models in Real Time
	Overall Workflow
	Real-Time Testing Considerations
	Complete Basic Model Testing
	Set up the Target Computer
	Configure the Model or Test Harness
	Add Test Cases for Real-Time Testing
	Assess Real-Time Execution Using verify Statements

	Reuse Desktop Test Cases for Real-Time Testing
	Convert Desktop Test Cases to Real-Time
	Use External Data for Real-Time Tests
	Reuse Desktop Test Case for Real-Time Testing

	Testing Custom C/C++ Code
	Importing and Testing Custom C/C++ Code
	Import Code Using the Wizard or the API
	Code Importer Generated Artifacts
	Limitations and Workarounds

	Import Custom Code for Unit Testing Using API Commands
	Conduct Unit Testing on Imported Custom Code by Using the Wizardfilename

	Verification and Validation
	Test Model Against Requirements and Report Results
	Requirements – Test Traceability Overview
	Display the Requirements
	Link Requirements to Tests
	Run the Test
	Report the Results

	Analyze a Model for Standards Compliance and Design Errors
	Standards and Analysis Overview
	Check Model for Style Guideline Violations and Design Errors

	Perform Functional Testing and Analyze Test Coverage
	Incrementally Increase Test Coverage Using Test Case Generation

	Analyze Code and Test Software-in-the-Loop
	Code Analysis and Testing Software-in-the-Loop Overview
	Analyze Code for Defects, Metrics, and MISRA C:2012
	Test Code Against Model Using Software-in-the-Loop Testing

